
V. PETI~it~EK 63 

with that used in lattice dynamics for defining 
Brillouin zones. 
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Abstract 

The Subcommittee has attempted to elucidate the 
nature of problems encountered in the definition and 
use of statistical descriptors as applied to crystallogra- 
phy and to propose procedural improvements. The 
report contains (a) a dictionary of statistical terms 
established for use by experimentalists; (b) a descrip- 
tion of the statistical basis for refinement procedures; 
(c) sections dealing with defects in the physical model 
used for refinement, and with the choice and sig- 
nificance of weighting schemes; and (d) recom- 
mendations, some of which may be readily imple- 
mented, whilst others may require a long-term effort 
to bring them into general use. 

Introduction 

A result of several discussions at the XIII Inter- 
national Congress of Crystallography in Hamburg, 

* Appointed 27 February 1985 as a Subcommittee of the IUCr 
Commission on Crystallographic Nomenclature. Following a 
review by the Chairmen of all relevant IUCr Commissions, the 
Final Report was accepted on 9 May 1988 by the Commission and 
on 2 September 1988 by the Executive Committee. 

1984, particularly those arising at a microsymposium 
devoted to crystallographic statistics, was a renewed 
recognition of the wide nonuniformity in use and 
nomenclature of many statistical methods applied to 
crystallography. The Commission on Crystallo- 
graphic Nomenclature addressed this problem soon 
after the Congress had ended and agreed that an 
attempt should be made to improve the situation. 
Accordingly, a Subcommittee on Statistical Descrip- 
tors in Crystallography was appointed in early 1985 
with its terms of reference 'to examine the validity of 
current statistical approaches used in estimating the 
variances in crystallographic quantities and to make 
recommendations for an improved methodology that 
rests securely on sound modern statistical theory and 
that can be widely adopted by the crystallographic 
community' .  

Vigorous correspondence within the Subcommittee 
resulted in a series of draft reports that gradually 
evolved toward general consensus. An intermediate 
report was presented orally at an Open Meeting of 
the Commission during the XIV International Con- 
gress of Crystallography in Perth 1987. 

Problems arising from the interface between the 
mathematical theory of probability and statistics and 

0108-7673/89/010063-13503.00 © 1989 International Union of Crystallography 
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the practising experimentalist are not confined to 
procedural issues. One cannot tackle such problems 
without realizing their important philosophical com- 
ponent originating from the need to justify the lack 
of rigour and the unavoidable approximations in the 
treatment of experimental data. For this reason, the 
attention of the non-specialist is drawn to the two 
main interpretations of probability used by statis- 
ticians. In the frequentist point of view, the probability 
of an event is taken to be equal to the limit of the 
relative frequency of the chosen event with respect 
to all possible events as the number of trials goes to 
infinity. The appeal of the frequentist approach for 
physical scientists lies in the apparent objectivity of 
its treatment of data. Almost all textbooks of statistics 
written for physical scientists follow this approach 
(e.g. Hamilton, 1964). On the other hand, the Bayesian 
approach extends the interpretation of probability to 
include degrees of belief or knowledge in proposi- 
tions. We pass from the probability of events 
(frequentist) to the probability of propositions 
(Bayesian). Nevertheless the axioms used to define 
the mathematical properties of probability remain 
unchanged. Consequently many of the statistical pro- 
cedures of the two approaches are identical, apart 
from some changes of emphasis. The Bayesian 
approach is very scanti!y mentioned in textbooks for 
physical scientists (see, however, French, 1978; Box 
& Tiao, 1973). The frequentist school reproaches the 
Bayesians for their apparent lack of objectivity. The 
Bayesians consider that objectivity in statistics is 
illusory, noting that everything is interpreted through 
the use of preconceived models. Most physical scien- 
tists argue in terms of frequentist concepts but 
implicitly use a more subjective or Bayesian touch in 
dealing with their experimental data. Often-encoun- 
tered expressions like 'the probable value of a par- 
ameter' are meaningful only in the Bayesian frame- 
work (French & Oatley, 1982). 

Definition of statistical terms 

Accuracy: The closeness of agreement between the 
value of an estimate, derived from a physical measure- 
ment, and the true value of the quantity (measurand) 
estimated. The reference to the true value implies that 
in practice accuracy cannot be exactly evaluated. The 
terms accuracy and precision must not be confused. 
Experimental science endeavours to gain insight into 
physical reality (or truth) through interpretation of 
measurements using models. This is based on the 
implicit assumption that a bad agreement between 
observations and the corresponding calculated model 
quantities indicates inaccuracy (see Goodness of fit); 
the converse of this proposition, that good agreement 
between observations and model quantities indicates 
accuracy, is thereby not implied. A model that does 
not take into account all available evidence and prior 

experience may give apparently precise, but inaccur- 
ate (wrong) results. 

Average: The average of a set of values {x,}, 1 -< i_< 
n, is defined by ff = (Y.~ xi)/n. If the {x,} are a sample 
of n independent observations of a single quantity x 
distributed according to a probability density function 
p(x) with mean # and variance o .2 , then ff is a 
minimum-variance unbiased estimate of/.t; 

is an unbiased estimate of o -2. The variance of the 
probability density function of ff is o.2/n and an 
unbiased estimate is obtained from s2/n. These esti- 
mates do not require a complete knowledge of p(x) 
to be available. Using a set of weights { w,}, the weigh- 
ted average is defined by .f,,. = Y~ w,x~/Y~ w~. If the {wi} 
do not depend on the {x~}, then ~, is an unbiased 
estimate of/~. The weighted average finds its use in 
cases where the n observations are drawn from popu- 
lations of identical mean but differing variances. 

Bayesian: An interpretation of probability 
developed from Bayes's theorem [Bayes, 1763; see 
Probability density function, equation (17) and 
Introduction]. Bayes's theorem itself is accepted by 
either frequentist or Bayesian statisticians. However, 
the assignment of prior probabilities in Bayesian 
inference has caused much discussion. Bayes's postu- 
late assumes an equipartition of ignorance and states 
that in the absence of information to the contrary all 
prior probabilities are assumed to be equal. The work 
of Jaynes (1983), on the other hand, shows that by 
using the concepts of group invariance uninformative 
prior probabilities may be obtained which are far 
from the uniform distributions suggested by a casual 
appreciation of Bayes's postulate. At the present time, 
many Bayesian statisticians would contend that the 
search for uninformative prior probabilities is mis- 
guided since some prior knowledge of the system 
studied is always available. 

Bias: An estimator of a statistical quantity is biased 
if the expected value of the quantity is not equal to 
the true value. In the physical sciences, bias is usually 
considered as synonymous with systematic error. In 
statistics, it is sometimes restricted to a particular type 
of systematic error arising from the mathematical 
model applied to the observations. Any non-linear 
operation or model can result in a bias, as, for 
example, taking the square root of an intensity when 
computing structure amplitudes. The bias is then due 
to the fact that the expected value of a function f ( x )  
is in general not a simple function of the expected 
value of x: 

E[ f (x ) ]  ~ f [  E (x)]. (1) 

The equality will hold for any distribution of x if 
f ( x )  is a linear function of x. Biases in this restricted 
sense are proportional to the variances due to random 
errors of the observations (Wilson, 1976b). 
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Conditional probability density function: see Proba- 
bility density function. 

Correlation" see Moment. 
Covariance: see Moment. 
Cumulative distribution function ( c.d.f.)" The func- 

tion P(x) obtained by integration of the continuous 
probability density function (p.d.f.) p ( t ): 

P ( x ) =  i p(t)  dt. (2) 
--oO 

Degrees of freedom: When m parameters are esti- 
mated from n observations (n -- m), the quantity n - 
m is called the number of degrees of freedom for error. 

Deviance: If Oj are the observed values, and Cj the 
corresponding calculated model values of n quan- 
tities, the differences dj = Oj - Cj are called deviates. 
The definition holds for any given choice of model 
parameters (see residual). The deviance between the 
calculated and observed quantities is 

Do = ~ (O j -  C,) 2= ~', d; .  (3) 
j = l  j = ~  

The weighted deviance is 

Ow = ~ ~ wjk(Oj--Cj)(Ok--Ck) 
j=l k=l 

= drWd, (4) 

where d is an n vector of deviates. The positive- 
definite n x n weight matrix W may be written as a 
product W =  BrB. The matrix B is not in general 
uniquely defined and may be specified, for example, 
as an upper-triangular matrix, or alternatively as a 
symmetric matrix. Equation (4) then becomes Dw = 
drBrBd,  where Bd is the vector of weighted deviates. 
If correlation terms of W are assumed to be negligible, 
W becomes a diagonal matrix, and the quantity com- 
monly refined in least squares is obtained" 

Dw = ~ wj(Oj-Cj) 2. (4') 
j = l  

The weighted deviates are then dj = w}/2(Oj - Cj ). If 
the weights are the reciprocals of the variances of the 
observed quantities, wj = o'j -2, or more generally W = 
V -~, where V is the variance-covariance matrix of 
the observations, the weighted deviance is often called 
the scaled deviance. For maximum likelihood, the 
scaled deviance is - 2  In Lmax. 

Deviate" see Deviance. 
Durbin-Watson d statistic: d quantifies the serial 

correlation of least-squares deviates. In its original 
form it is defined by 

N N 

d= Y~ (dj-dj_,)2/ E d], (5) 
j = 2  j = l  

where dj = O j - C j  is the deviate, d takes values 0 < 

d < 4. For no serial correlation a value close to 2 is 
expected. With positive serial correlation, adjacent 
deviates tend to have the same sign and d becomes 
less than 2, whereas with negative serial correlation 
(alternating signs of deviates) d takes values larger 
than 2. Tables of values for testing d are given by 
Durbin & Watson (1950, 1951, 1971) and a convenient 
approximation to the tables based on the normal 
distribution is provided by Theil & Nagar (1961). 
Clearly, the sequencing of the observations is impor- 
tant in the evaluation of d. For a least-squares fit 
where the value(s) of d are significantly different from 
2, the estimates of the variances and covariances of 
the parameters can be grossly in error, being either 
too large or too small. The serial correlation of the 
deviates may arise from a time dependence of the 
observations [e.g. time series; Flack, Vincent & Vin- 
cent (1980)], from an experimental correlation of the 
observations [e.g. gas electron diffraction; Morino, 
Kuchitsu & Murata (1965); Murata & Morino (1966)] 
or, most importantly in crystallography, from 
inadequacy in the physical model used in the least- 
squares fit [e.g. Rietveld analysis; Hill & Flack 
(1987)]. The most general form of d is given by 

d T B T p B d  

d -  drWd , (5') 

where d, W and B' are defined in the section Deviance, 
P is an n × n matrix with Pjk = 2 for I J -  kl--0,  Pjk -- -1  
for IJ - k] = 1, and P~k = 0 for IJ -- kl > 1, arid B r B = W. 

Estimate: A value of a physical quantity obtained 
from the observations by use of an estimator. The 
quantities usually estimated in crystallography are 
lattice parameters and atomic positional and dis- 
placement parameters. 

Estimated standard deviation ( e.s.d.)" An estimate 
of the standard deviation, or square root of the vari- 
ance, of a probability density function. Methods used 
for obtaining e.s.d.'s of diffraction intensities may 
take into account quantum counting statistics, the 
variations of periodically measured check reflections, 
and the scatter among symmetry-equivalent reflec- 
tions. Such methods are part of the model, and not 
of the observations. 

Estimator: A mathematical expression (function) 
leading from the observations to an estimate of the 
value of a physical quantity. An estimator is unbiased 
if its expected value is equal to the true value of the 
quantity (see Model). In the presence of bias in the 
restricted sense which is proportional to the variances 
due to random errors of the observations, the expected 
value of the estimator changes with observation time, 
and converges to the unbiased value (in the restricted 
sense) for an eternal immutable experiment. 

Expected value: Defined as 
+co 

E[f (x)]= I f ( x ) p ( x ) d x  (6) 
- o o  
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for the function, f ( x ) ,  of a random variable x whose 
probability density function is p(x). E[f(x)] is not a 
function of x, but it does depend on p (x). Expectation 
is a synonym of expected value. The expected value 
of x, E(x), is called the mean ofthe probability density 
function and is often denoted by p.. 

Gaussian : see Normal probability density function. 
Goodness of fit: A measure of the extent to which 

calculated model values Cj of a set of n quantities 
(e.g. X-ray intensities) approach the observed values 
@. In the statistical literature, the term denotes a 
class of hypothesis tests. For a crystallographic least- 
squares refinement with weight matrix W, it is defined 
as the square root of the weighted deviance divided 
by its expected value: 

S2=drWd/  E(drWd). (7) 

The deviation of S 2 from unity is a measure of the 
validity of the model used to compute Cj, and of the 
estimate of the variance-covariance matrix V of the 
observations used to calculate E(drWd).  If, and only 
if, the weight matrix W in the refinement is chosen 
to be the inverse of V, W =  V -~, then E(dT-Wd)= 
n - m ,  regardless of the form of the p.d.f. (Wilson, 
1980b); m is the number of variables in the model, 
and n - m  the number of degrees of freedom. For a 
diagonal matrix V, S 2 then becomes 

S 2 = ( n - m )  -' ~ o'f2(Oj-Cj) 2. (7') 
j = l  

Further, for the W =  V -~ weighting scheme, if the 
deviates are normally distributed (i.e. with Gaussian 
joint p.d.f.), the value of S 2 that will be exceeded in 
lOOa% of replications is given by 

($2),~ =Xz , - , , . J (n -m) ,  (8) 

where z h',,-,,,.,~ is the 100a % point of the h ,2 distribu- 
tion. See Abrahams (1969) for a fuller discussion, 
including calculation of the expected range of S 2 at 
a given confidence level. It is common practice among 
crystallographers refining parameters by least squares 
to multiply the corresponding estimated standard 
deviations by S. This questionable practice is 
equivalent to the assumption that a lack of fit is due 
entirely to an underestimate of the variances of the 
observations, whose relative values have been cor- 
rectly assigned. 

Maximum likelihood: If the m vector x is a set of 
parameters, and the n vector y is a set of observations, 
then the conditional probability density function 
Pc(y]x) can be considered to be a density function 
for x giving the likelihood of observing y. It is written 
L(x[y). The method of maximum likelihood finds the 
maximum of L as a function of x. It is often simpler 
to work with the natural logarithm, In L. Maximum 
likelihood is equivalent to least squares for a normal 
distribution of errors and to Bayesian estimation 
using a uniform prior distribution. 

Mean" term used for the expected value of x, E(x) ,  
of a probability density function p(x). 

Model: Conjecture about physical reality used to 
interpret the observations. An estimator is constructed 
using the mathematical formulation of the model. In 
crystallography, the observations are usually 
integrated intensities and associated backgrounds, 
but may also include other information, e.g. crystal 
dimensions. The standard model is kinematical X-ray 
or neutron diffraction by a crystal composed of 
spherical atoms or point nuclei undergoing harmonic 
displacements. The term 'corrected observations' 
leads to confusion. Any correction applied to the 
observations is part of the model, and results in a 
quantity which has not been observed. This includes 
all data-reduction procedures to obtain structure 
amplitudes, including absorption and Lorentz- 
polarization corrections and averaging of symmetry- 
equivalent data. Thus, structure amplitudes are not 
observed quantities. For the sake of computational 
efficiency, corrections without adjustable parameters 
may be applied to the observations in a data-reduction 
procedure. However, any non-linear process, e.g. tak- 
ing the square root, may result in additional bias. 

Moment: The expected value of the nth power, x ' ,  
of the random variable x is called the nth moment of 
the probability density function (p.d.f.) p(x): 

+OC 

E ( x " ) =  I x"p(x) dx. (9) 

The first moment or mean is commonly denoted by 
E(x )=p . .  The second moment about the mean, 
E [ ( x - ~ ) 2 ] ,  is the variance of p(x) and is commonly 
denoted by cr z. In a space of n dimensions, the mean 
of the joint probability density function pj (x) is an n 
vector E(x) with elements p-i = E(xi) equal to the 
mean of the marginal p.d.f, of x~. The n x n variance-- 
covariance matrix (tensor of rank 2 in n dimensions) 
is defined by the second moments about the mean: 

v,, = E l ( x , -  m ) ( x j -  m )] 

= ~ ( x i - ~ , ) ( x j - m ) p ~ ( x ) d " ( x ) .  (10) 

For i =j ,  this is equal to the variance of the marginal 
p.d.f, of xi, V~ = o~. The correlation matrix is defined 
by 

po = vo/  ( ~,,~j ), (11) 
-1 <-po -< 1 and pi, = 1. The set of Mth moments of 
pj(x), E[x~'Cl)x'~¢z)...x~ <'~] with m ( 1 ) + m ( 2 ) +  
. . .+ m(n)= M, transforms as a totally symmetric 
tensor of rank M in n dimensions. 

Normal (Gaussian) probability density function: A 
probability density function of the quantity x with 
standard deviation o about the mean g, given by 

p(x)=cr-'(Zrr) -1/2 exp{-½[(x-lx)/o]2}.  (12) 

The normal probability density function can originate 
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from addition of a large number of small independent 
errors, each with its own non-normal distribution, but 
occurrence of a normal p.d.f, does not imply this 
underlying structure. The standard normal deviate z = 
( x - / z ) / o .  has a normal distribution with zero mean 
and unit standard deviation, when x is distributed 
according to (12). 

Normal probability plot: A graphical procedure in 
which the differences between two independent sets 
of measurements, or those between experiment and 
theory, are analyzed in terms of a normal (Gaussian) 
p.d.f The ordered experimental normal deviates or 
order statistics such as 

6m, = [ O ( 1 ) , -  kO(2),]/[ o.2(1), + k 2o-2(2),] 1/2, 

where O ( 1 ) a n d  0 ( 2 ) a r e  independent observations 
with variances o'2(1) and o-2(2) of the same quantity 
obtained in separate experiments and k is a scale 
factor, or 6Ri = ( O i -  Ci)/ o-i (see Goodness of  fit) are 
plotted against the ordered standard normal deviates. 
A resulting normal probability plot that is linear, with 
zero intercept and unit slope, shows that the experi- 
mental deviates are normally distributed (Abrahams 
& Keve, 1971; Hamilton & Abrahams, 1972; Hamil- 
ton, 1974). The 6R plot is a more powerful statistical 
descriptor than the traditional single-valued dis- 
crepancy index R = ~[ O~ - C i ] / Z O i .  

Order statistic: When a sample of variate values 
are arranged in order of magnitude, these ordered 
values are known as order statistics. 

Parameter: Models are formulated in terms of phy- 
sical quantities called parameters, values for which 
are estimated from the observations. The true 
(unknown) value of a parameter is a constant, since 
it represents a physical fact independent of the 
observations. Any estimate of its value is a random 
variable. In the framework of Bayesian statistics, a 
parameter (not its estimate) is regarded as a random 
variable and the associated p.d.f, is taken to represent 
the scientist's belief in the value of the parameter. 

Population: see Random variable. 
Precision: The closeness of agreement between the 

values of a measurement or of an estimate obtained 
by applying a strictly identical experimental pro- 
cedure several times. It is expressed numerically by 
a standard deviation or variance. The precision of a 
diffraction intensity is often inferred from only one 
or maybe two measurements by (1) invoking Poisson 
statistics for the count rates, and /or  (2) using the 
experience gained from earlier diffraction experi- 
ments. Precise estimates are not necessarily accurate 
(Prince, 1985; Rollett, 1985). 

Probability density function (p.d.f ): The function 
p (x) of the random variable x, such that the probabil- 
ity of finding x between a and b (a < b) is given by 

b 

P(a<_x<_ b ) =  ~ p(x)  dx. (13) 
a 

The probability of finding x somewhere within the 
whole interval of variation is equal to unity. 

Consider an ordered set, or n vector, of n random 
variables x = (x lx2 . . .  xn). The joint (or multivariate) 
p.d.f, of x is the function pj(x), such that 

P(al <-xl < - b , , . . . ,  a ,<-x,<-b,)  
b I b n 

= I . - .  I p.~(x)d"x. 
al an 

(14) 

The marginal p.d.f, p~(xi)  of an element xi of x is 
the p.d.f, of that element irrespective of the values of 
any other elements: 

p M ( x i ) = I p j ( x ) d " - l x ,  (15) 

where the integration is over the full range of all 
elements except xi. If pj(x, y) denotes the combined 
joint p.d.f, for the elements of two vectors x and y, 
then the conditional p.d.f, for x given y, pc(x[y) ,  is 
the joint p.d.f, of the elements of x when the elements 
of y are held at fixed particular values. It is related 
to the joint p.d.f, of x and y by 

pc (x [y) = &(x,  y)/PM (y). (16) 

Therefore, pj(x, y) -- pc(x ly)  PM(Y) = pc(y lx)  pM(x) 
from which it follows that 

pc(xIY)=pC(yIx)pM(x)/pM(y).  (17) 

This last relation is known as Bayes's theorem. If 
Pc (x[y) = PM (x) for all possible values of y, the ran- 
dom variables x and y are statistically independent. 

Random error: An error having a zero expected 
value. Particularly important in crystallography are 
statistical fluctuations in quantum counts. Other 
effects like irreproducible play in diffractometer set- 
tings, and short-term fluctuations of temperature, 
pressure, mains voltage (Abrahams, 1969) and 
humidity contribute, at least in part, to the random 
errors. Random errors can be reduced at the expense 
of increased measuring time. If the model and the 
method of refinement are perfect, errors of estimated 
parameters are also random (see Bias). 

Random variable: The possible outcomes of a 
measurement. The set of all possible outcomes is a 
population. The set of outcomes of a finite number of 
repeated measurements is a sample drawn from the 
population. 

Repeatability: The closeness of the agreement 
between the results of successive measurements of 
the same measurand carried out under the same con- 
ditions, namely the same method of measurement, 
the same observer, the same measuring instrument, 
the same location, and repetition over a short period 
of time. 
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Reproducibility: The closeness of agreement 
between the results of measurements of the same 
measurand where the individual measurements are 
carried out changing conditions such as method of 
measurement, observer, measuring instrument, loca- 
tion, time. 

Residual: A general term denoting a quantity 
remaining after some other quantity has been subtrac- 
ted. It occurs in a variety of contexts. For example, 
the term residual has been used by crystallographers 
to mean the discrepancy index R. In a different sense, 
if the calculated value of a variable is subtracted from 
an observed value then the difference may be called 
a residual, although the more precisely defined term 
deviate is to be preferred. Some authors restrict it to 
mean only those deviates obtained from least squares 
at convergence, but terms such as 'deviates at conver- 
gence' or 'residuals at convergence' would avoid poss- 
ible confusion. 

Sample: see Random variable. 
Scaled deviance: see Deviance 
Standard deviation: The square root of the variance 

of a probability density function. 
Systematic error: Contribution of the deficiencies 

of the model to the difference between an estimate 
and the true value of a quantity. A list of important 
systematic errors in measured X-ray intensities has 
been given by Abrahams (1969). It can be reduced 
by improving the model, but not by an investment in 
measuring time. In some cases, the presence of sys- 
tematic errors can be inferred from the goodness of  
fit, from normal probability plots (Abrahams, 1974), 
from the distribution of scaled deviates ( Q - C j ) / c r j  
as functions of O, C, (sin 0)/A, diffractometer angles 
etc., or by using the Durbin- Watson statistics (Flack, 
1984, 1985) to reveal correlations. Some systematic 
errors (e.g. an incorrect value of the wavelength) 
cannot be detected by any statistical test. The amount 
of systematic error present in any estimate cannot be 
evaluated exactly (see accuracy). Note that, strictly 
speaking, observations are free of systematic error, 
in contrast to the model used for their interpretation 
(see estimator). 

Unbiased: see Estimator. 
Uncertainty: A colloquial term used to describe the 

lack of knowledge of the true value of a parameter 
that includes the effects of systematic error (model 
inadequacy), as well as lack of statistical precision. 

Variance: The second moment about the mean (see 
Moment) of a probability density function. 

Variance-covariance matrix: The n x n  matrix 
whose elements are the second moments about the 
mean of a joint probability density function of n ran- 
dom variables [see (10)]. 

Weight: Value used to express the relative impor- 
tance of an observation (e.g. an intensity) with regard 
to the quantities to be deduced from the data set (e.g. 
atomic positional coordinates). Weights appear in 

averaging, least squares, statistics (e.g. goodness of  
fit) and elsewhere. For a set of n data the weights 
are represented by an n x n  weights matrix W. 
Usually, W is taken to be diagonal. In averaging and 
least squares, minimum-variance estimates are 
obtained by W = V -~ where V is the variance-covari- 
ance matrix of the observations. 

Weighted deviance: see Deviance. 

Refinement 

Refinement is the process of adjusting the parameters 
of a model to find values most nearly compatible with 
the observations. From an approximate set of starting 
parameters for a model obtained by the methods of 
crystal structure determination, the parameter esti- 
mates are varied to obtain a best fit between the n 
observed quantities O~ and the corresponding calcu- 
lated quantities Cj. In most crystallographic work, 
the Oj are diffraction intensities, but non-diffraction 
data may also be included. Concerning correction 
factors to obtain structure amplitudes IF] 2 or ]F], we 
refer to the discussion of the term model. 

The most popular refinement method in the phys- 
ical sciences, and about the only one used in crystal- 
lography, is the method of least squares, which 
minimizes the weighted deviance D,, = drWd. Some 
statistical studies, however, suggest that least squares 
may not always be the best method. Tukey (1974) 
has asserted that chemists and physicists 'both make 
less of their data than they should and, too often, 
come to think better of their results than deserved'. 
While this may be true, no other methods have been 
shown to be convincing alternatives, except variants 
of least squares such as, for example, robust-resistant 
methods (see below). Among the other methods 
described in textbooks (Kendall & Stuart, 1979; 
Eadie, Drijard, James, Roos & Sadoulet, 1971), 
maximum likelihood takes a prominent place, but it 
is equivalent to least squares for a normal distribution 
of errors. The popularity of least squares is probably 
because the error distribution of the deviates Oj - 
is not known (for the distribution of the net intensity 
see Wilson, 1980a). In the absence of this informa- 
tion, it is difficult to justify alternative approaches. 
In addition, most theoretical work assumes a normal 
distribution. 

An authoritative discussion of the method of least 
squares is found in Prince (1982, 1985, 1989). Linear 
least squares is an unbiased estimator if the weights 
are independent of the observations, and if the model 
represents physical reality correctly for some set of 
values of the parameters. In particular, the Gauss- 
Markov theorem states that minimal variances of the 
estimates are obtained if the weight matrix W is 
chosen as the inverse of the variance-covariance 
matrix V of the joint p.d.f, of the observations. The 
inverse of the normal-equations matrix is an unbiased 
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estimate of the variance-covariance matrix of the 
model parameters if, and only if, W =  V-' .  For any 
weighting scheme other than W = V- ' ,  the estimation 
of the variance- covariance matrix of the least-squares 
parameters should in principle be carried out using 
formulae given in Prince (1985, 1989) and in Rollett 
(1988), but this has never been tried in practice. The 
goodness of  fit is expected to be 1-0. In crystallo- 
graphic applications, the model is usually expressed 
by non-linear differentiable functions. The weighted 
deviance is minimized by iteratively linearizing the 
model functions with a Taylor expansion at approxi- 
mate parameter values. The Gauss-Markov theorem 
applies then to the fit and parameter values at conver- 
gence insofar as the linearized functions are good 
approximations to the model functions in the vicinity 
of the minimum (see also Eadie et al., 1971). In 
practice, the number of parameters to be estimated 
is considerable, and the use of off-diagonal terms in 
the weight matrix W is cumbersome in several 
respects. For this reason, W is usually chosen as a 
diagonal matrix. This practice is often justified by the 
presumption that intensity measurements are uncor- 
related. However, off-diagonal terms in V may well 
arise if non-random errors such as absorption errors 
are present or if the measurements have been sys- 
tematically altered. 

The assumptions that the Gauss-Markov theorem 
is based upon are never realized in practice. In par- 
ticular, the variances of the observations, whether 
they be derived from the spread of repeated or sym- 
metry-equivalent observations about their average, or 
from Poisson statistics, are estimated from the 
observations themselves, by methods which are 
indeed a part of the model. The model is only an 
approximation to physical reality, and is often rather 
crude. The adjustable parameters may have no objec- 
tive significance. Thus, harmonic and higher-order 
displacement formalisms only serve to parametrize 
the atomic p.d.f.'s. The values obtained by a 
refinement depend on the number of terms used in 
the expansion, and consequently only the total esti- 
mated p.d.f.'s may be physically meaningful. The true 
p.d.f.'s they approximate are not even guaranteed to 
possess the higher moments appearing in the Gram- 
Charlier and Edgeworth expansion formalisms 
(Johnson & Levy, 1974). 

The assumed symmetry of the crystal structure is 
part of the model and is in many cases higher than 
the observed symmetry of the diffraction intensities. 
These are affected by anisotropic effects such as 
absorption and extinction for which corrections 
are only approximate. The symmetry-equivalent 
intensities, even if corrected for these effects, thus 
may belong to different populations. Consequently, 
their symmetry equivalence should not in principle 
be used as a criterion for averaging. Practical con- 
siderations of computation time and data storage 

require, however, that some data reduction by way 
of averaging be carried out. Refinements, using a 
crystal structure, carried out by least squares on 
unaveraged and averaged data, are only identical 
under certain strict conditions* rarely realized in 
practice. The significance of the estimated standard 
deviations of the average values of corrected 
intensities may be doubtful (see below for Bayesian 
interpretation). 

It is not surprising that the goodness-of-fit values 
of most least-squares calculations on real data are 
only accidentally within an acceptable range near 1.0. 
The variances obtained for the estimates are thus of 
dubious significance. In fact, the results of indepen- 
dent determinations of the same structure may differ 
by much more, and hardly ever by less, than is allowed 
by statistical tests. The commonly applied procedure 
of multiplying e.s.d.'s by the goodness-of-fit value has 
no statistical basis. From the point of view of the 
Gauss-Markov theorem and frequentist statistics, this 
situation can only be improved by making the model 
more realistic. 

The Bayesian interpretation of statistics incorpor- 
ates prior knowledge or beliefs in the p.d.f, of the 
observations. In fact, measurements in all physical 
science are necessarily conditioned by what we expect 
to find a priori, and are thus not independent of 
the model. The variance-covariance matrix of the 
observations reflects the author's estimation not only 
of the variability of repeated measurements, but also 
of the effects of approximate or omitted corrections 
which are akin to model deficiencies. The deviations 
from the average of symmetry-equivalent I FI 2 values 
may serve to estimate the anisotropy of such effects, 
and the standard practice of averaging can thus be 
justified. The confidence of the crystallographer in 
the model and in the variance-covariance matrix of 
the observations is based on an examination of the 
deviates and may be modified during refinement. The 
use of restraints also fits into the Bayesian philosophy, 
their estimated variances being chosen by the scien- 
tist's confidence in the restrained features of the 
model. The error estimate of the results is represented 
by an estimated standard deviation. Different scientists 
may arrive at different estimates, a degree of 
confidence being a subjective measure. The underly- 
ing model may be criticized and must, of course, be 
completely described. 

* These conditions are (a) the averaged data should consist of 
the weighted averages of the equivalent reflections calculated using 
the least-squares weights for the unaveraged data; (b) the least- 
squares weights for the averaged data should be the sum of those 
before averaging; (c) a weighted deviance term corresponding to 
the dispersion of the equivalent reflections about their weighted 
average should be added to the weighted deviance minimized for 
the averaged data. This deviance term does not alter the parameter 
values, but may affect the interpretation of the error estimates by 
altering the goodness of fit. 
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Refinement on I ,  IFI 2 or IFI? 

There was strong disagreement among members of 
the Subcommittee over the question of whether 
'observations' used in a refinement should be net 
integrated intensities I, values of IF[ 2 or values of ]F], 
or indeed whether it makes a difference. The critical 
factors in the transformation from peak and back- 
ground scan intensities through net integrated 
intensities to I FI 2 concern the application of correc- 
tion terms associated with absorption, the Lorentz- 
polarization factor, thermal diffuse scattering etc., 
whereas the change from [FI 2 to IF] concerns the 
square-root function. The extraction of the square 
root is a non-linear operation that has the potential 
of introducing a bias proportional to the variance of 
IF] 2 (Wilson, 1976b, 1979), with the additional prob- 
lem of determining what to do for the very weak 
reflections where statistical fluctuations in the peak 
and background measurements may cause the net 
intensity to be negative. The widely used formula for 
the e.s.d, of IFI, o~(Ifl)=o~(IFI2)/21FI, may be 
appropriate for strong reflections but must be 
modified for weak reflections in order to prevent 
cr(lF]) from becoming infinite at IFI =0. French & 
Wilson (1978) and Gonschorek (1985) have proposed 
methods for obtaining IFI and c~(IFI) from IFI 2 and 
~(IF12). 

The partial derivative of  the calculated quanti ty 
Cj =[FI"--(A2+B% "j2 with respect to the variable 
t, r is 

aCj/av,= nlFl"-2{A(aA/az,,)+ B(aB/au,)}. (18) 

If the calculated structure factor is zero, i.e. A = B = O, 
then aCj /Our=O for n_>2, and it is undefined 
for n <2. The contributions of the j th observation 
to the normal-equations matrix and vector are 
wj(OCj/a~,r)(OCj/aus) and w j ( O j - C j ) ( a C ~ / a u r ) ,  re- 
spectively. If the weight is chosen according to 
w(l~l)=4l~12w(lFjl2), then the contribution to the 
matrix is exactly the same, and the contribution to 
the vector nearly the same, for refinements on IF] and 
IF[ 2. In many cases, omission of weak reflections has 
a negligible effect on the results (see recommendation 
6), and the two kinds of refinement are then nearly 
identical. For this reason, the IF[ versus IF] 2 con- 
troversy is often considered to be irrelevant. 

The arguments in favor of refinement on [FI are based 
on a mathematical analysis by Prince & Nicholson 
(1985). They observe that different reflections have 
different leverage which is a quantity that measures 
the influence of an individual reflection on the fit. It 
is proportional to the contributions to the matrix and 
vector described above. Because alF[2/av~ is small if 
[F] 2 is small, weak reflections have little leverage in 
refinements on [FI 2, even if some of the derivatives 
alF[/au~ are substantial. Including them in a 
refinement on ]F] 2 can do no harm, but no good either. 

In a refinement on IF], care must be taken to give 
non-zero weights to the weak reflections, as men- 
tioned before. Regarding the discontinuity of the 
partial derivatives of IFc] at Fc = 0, Prince & Nichol- 
son (1985) argue that the practice of assigning the 
phase of Ft. to ]Fo] in effect makes the "observation' 
a Bayesian prior estimate of F (not IF]), and that the 
equivalent value for an unobserved reflection is F = 0 
with a finite variance based on the threshold of 
observability. The partial derivatives of F with respect 
to the model parameters are continuous everywhere. 
These reflections, even though weak, may be sensitive 
to some parameters and do not lose their leverage. 
Their inclusion can improve the precision of par- 
ameter estimates. 

The arguments in favor of refinement o n  IF[ 2 are 
based on the bias introduced by extracting the square 
root (Wilson, 1976b, 1979), and on the undesirable 
discontinuity of the partial derivatives of [FI at F = 0. 
In principle, refinements should be on quantities as 
near as possible to the actual observations, and all 
non-linearities should be part of the model. It is 
improper to exclude the weak reflections, where the 
bias may be a substantial fraction of the IF] value, 
by introducing an arbitrary cut-off at a minimum net 
intensity, be it zero or some positive value, because 
this results in a systematic inclusion of reflections 
with positive fluctuations and exclusion of reflections 
with negative fluctuations, and thus in a biased data 
set. Bias is therefore avoided by using all reflections 
in a refinement on ]FI 2. Hirshfeld & Rabinovich 
(1973) recommend inclusion of negative net 
intensities with their negative values. The discon- 
tinuity of the partial derivatives of ]F] is akin to the 
crystallographic phase problem. The model contains 
little information on the phase of F if the calculated 
structure factor is small, and none at all at Fc = 0. 
For these reflections, we thus do not have a good 
Bayesian prior estimate of F, hence their variances 
should be large and their small leverage in a 
refinement on ]FI 2 appears to be justified. The 
leverage is not given by the 'observed', but by the 
calculated value ]F~[ 2. Thus, a weak reflection may 
have a non-negligible effect if ]F~] 2 is considerably 
larger than [Fo] 2. If, on the other hand, ]FcI 2 = 0 while 
[Fo] 2 is larger than maybe 5 e.s.d.'s, the structure pre- 
sents an unsolved phase problem. Apart from a poss- 
ible bias when refining on IF], the main difference 
between refinements on IF[ and ]FI 2 is equivalent to 
an up-weighting of weak reflections if or(IF]) is kept 
finite for IF[ = 0. The same effect could be achieved 
by explicitly up-weighting the weak reflections. In 
some structures, weak reflections are of prime import- 
ance. Crystallographers working on such structures 
are urged to give serious attention to these opposing 
arguments (see recommendation 6). 

The arguments in favor of refinement on I are an 
extension of those for refinement on I FI 2. It has 
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become customary to regard the relationships 
between peak and background measurements, net 
intensity and IF[ 2 as being linear transformations with 
constant factors. In this way, the measurement error 
(or the confidence in a priori estimates) of crystal 
dimensions, polarization ratio, changes in reference 
intensity for radiation damaged or decomposing crys- 
tals amongst other systematic effects are not taken 
into account. The transformation from peak and 
background measurements to net intensity values 
leads to the paradox of 'negative as-measured' 
intensities. As systematic error is a major source of 
trouble, some members of the Subcommittee propose 
investigation of methods permitting refinement of 
crystal structures on all observations, i.e. measured 
intensities as well as crystal dimensions, polarization 
ratio, crystal decomposition curves etc. They propose 
inclusion in the model of additional refineable par- 
ameters (e.g. crystal dimensions) and introduction of 
the corresponding observations as restraints. The 
advantages are clearly an improved modeling of the 
structure and more realistic error estimates on atomic 
parameters. 

Defects in the model 

It is evident that the results of a refinement can be 
improved by identifying the presence and origin of 
systematic error, and by improving the model to 
satisfy the assumptions of frequentist statistics 
(Gauss-Markov theorem) more fully. The almost uni- 
versally observed deviation of the goodness-of-fit 
value from unity indicates the presence of defects in 
the model and/or  the variance-covariance matrix of 
the observations (see also Wilson, 1980b). A normal 
probability plot gives more detailed information on 
the presence of systematic error. 

Identifying the origin of systematic error and 
improving the model is far more difficult. Beu and 
his collaborators (Beu, Musil & Whitney, 1962, 1963; 
Beu & Whitney, 1967; see also Mitra, Ahmed & Das 
Gupta, 1985; Mandel, 1980) achieved a major 
improvement in the precise and accurate determina- 
tion of lattice parameters by careful tests and correc- 
tions for remaining systematic errors based on 
maximum likelihood. They assumed a normal distribu- 
tion of errors, and their refinement technique was 
therefore equivalent to least squares (Wilson, 1980b). 
The modeling of electron density distributions with 
aspherical-atom formalisms (Stewart, 1976; Hirsh- 
feld, 1977), and of atomic thermal-displacement 
probability density functions with anharmonic contri- 
butions (Johnson & Levy, 1974; Kuhs, 1983) has 
shown considerable success, but has not had a sig- 
nificant impact on standard crystal-structure determi- 
nation, which in its present form answers the needs 
of chemical crystallographers and will continue to 
be an increasingly automated analytical technique. 

A thorough study of intensity measurement and data- 
reduction procedures might indicate more generally 
applicable improvements. 

Weighting schemes 

A very commonly used criterion for the choice of 
weights is that the variance of the derived estimates 
be minimal, although other weighting schemes are 
permissible. The minimum-variance criterion implies 
that W = V -~. Regardless of the choice of weights, 
proper calculation of estimated standard deviations 
and of the goodness of  fit in intensity averaging and 
in least squares will require an estimate of V, the 
variance-covariance matrix of the observations. The 
frequentist and Bayesian approaches to statistics lead 
to different interpretations of V (see section on 
Refinement). For the one, V is concerned only with 
the random fluctuations of the measurements 
whereas, for the other, V also incorporates the scien- 
tist's belief in the model with which the observations 
are being analysed. 

Weights of  averaged intensities 

Minimum-variance weights can at best be based 
on estimated standard deviations of intensities. In 
many cases, n symmetry-equivalent corrected net 
intensities I~ = ciO~ will be averaged, where the c~ will 
contain at least the scan speeds and absorption correc- 
tions. Weights used in averaging should not be based 
on the counting statistics of the individual observa- 
tions whose estimated variances are biased and result 
in larger weights for accidentally low intensities, and 
lower weights for accidentally high intensities. Owing 
to the symmetry postulated while averaging, the 
expected values of all corrected intensities I~, E(li),  
must be the same quantity/xl, and the expected values 
of the observed intensities Oi are thus 

E( Oi) = t t l /  c,. (19) 

An often used expression for the variance of O~ 
(Abrahams, 1974) is 

0-2(0,)= E(O, )+b ,+kE(O, )  2 
2 2 =/xt/c,  + b, + k/x ! /c / ,  (20) 

where bi is the contribution of the background esti- 
mated from peak and background count rates, and 
kE(Oi) 2 is the contribution from known and 
unknown sources of random error. Minimum-vari- 
ance weights cr-2(li)={cio'(Oi)} -2 needed for the 
calculation of the average intensity can be obtained 
by iteratively replacing/x, by an approximate average 
value L In a first step, b~ and k may be neglected and 
the average intensity then becomes, 

f = Y  (I,/c,)/Y. ( l /e ,)  = Y. O,/Y~ (l/e,) .  (21) 

Estimates of the factor k in (20) can be obtained from 
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the variations of periodically measured check reflec- 
tions. Differences among symmetry-equivalent 
intensities can (and indeed should) also be used to 
estimate k, the value of which then includes at least 
part of an anisotropic systematic error. A possible 
procedure consists in adjusting k to obtain compar- 
able values for the variance of I estimated from the 
o-2(L) derived from (20), and estimated from the 
spread of the li around the average value f: 

o2(f) = 1/~ o-2(i,) 

o'(L) = c,o.(O,); n_>2. (22) 

The average goodness of fit of all symmetry- 
equivalent sets is then near 1.0. If the number n of 
symmetry-equivalent observations is large, the larger 
of the two estimates of o-(f) obtained with some 
approximation for o-2(1;), their average, or the value 
from the spread alone may be used. Alternative and 
more convenient procedures, variants and extensions 
may be proposed, or have already been implemented 
(see also Blessing, 1987). 

Weights based on the model 

The theory of least squares shows that expected 
values of parameter estimates are not affected by the 
choice of weights, provided that the model is free of 
systematic error (i.e. the estimator is unbiased), and 
the weights are not functions of the deviates dj-- 
O j - C j  (Prince & Nicholson, 1985; Prince, 1985, 
1989). On the other hand, weights based on dj, O i or 
Cj may result in a bias. As remarked before, variances 
of the observations are usually estimated from the 
observations themselves. In particular, the contribu- 
tion of counting statistics to the variance of an 
intensity is proportional to the intensity itself. An 
accidentally low intensity will have a lower variance 
than an accidentally high intensity, showing that this 
estimate of the variance is indeed biased. The corre- 
sponding weights may result in bias in the parameter 
estimates. Wilson (1976b) investigated the effect by 
assuming that the weight of a deviate is an arbitrary 
function of the corresponding measured and/or  
calculated quantity, wj -- wj(Oj, Cj). He showed that 
in case of refinement of one parameter, the use of the 
weighted mean w~({Oj + 2Cj }/3) removes this bias to 
the order of the mean-square statistical fluctuation of 
the measurement. Weights from (20) and (22) may 
be functions of all intensities, and the corresponding 
bias is then more difficult to evaluate. 

The omission of observations is equivalent to 
assigning zero weights. Again, a bias may be intro- 
duced if the criterion for omission is based on dj, Oj 
or Cj. Thus, if weak reflections are systematically 

omitted, those with an accidentally low intensity will 
be preferentially discarded, and those with an 
accidentally high intensity will have a better chance 
of being retained. An example of such a bias has been 
described by Seiler, Schweizer &.Dunitz  (1984). 
Omission of observations according to (sin 0) /a  or 
reflection number should not result in a bias. 

Weight-modification schemes designed to lessen 
the effects of systematic errors are necessarily based 
on the deviates d~. An example is found in Wang & 
Robertson (1985). They estimate the variances of the 
structure amplitudes from the distribution of the 
weighted deviates. The resulting weights are intended 
to represent all kinds of random errors from different 
sources, but include also contributions of systematic 
errors. The robust/resistant refinement techniques are 
another example. The results of a standard least- 
squares refinement may be considerably influenced 
by 'outliers', observations that seem so discrepant 
with calculated values that a blunder of the inves- 
tigator or a malfunctioning of the equipment is sus- 
pected. The naive approach to such observations is 
to discard them by setting the weights to zero 
whenever the discrepancy exceeds a certain limit. The 
robust/resistant methods avoid the discontinuity of 
this procedure by decreasing the weights gradually 
with increasing disagreement (Prince, 1982; Nichol- 
son, Prince, Buchanan & Tucker, 1982). 

Restraints 

Restraints or soft constraints are relations between 
parameters of the model that are treated formally in 
the same way as observations (Waser, 1963; Hen- 
drickson & Konnert, 1980; Hendrickson, 1985). They 
may be used to specify bond lengths, angles, planarity 
of molecules, relations between displacement par- 
ameters, and for numerous other purposes. The vari- 
ances (and covariances) attributed to such pseudo- 
observations are chosen according to the scientist's 
beliefs regarding their validity, in agreement with the 
Bayesian interpretation of statistics. E.s.d.'s of the 
parameter estimates are, of course, dependent on 
these variances. It may be difficult to judge whether 
they are appropriate ifthey are recorded in a structure 
data file that omits all information regarding the 
restraints. 

Enhancing particular features 

A minority of Subcommittee members believes in 
the merit of weighting schemes chosen to enhance 
particular features of the structure. These weights 
then reflect the scientist's aims rather than the pre- 
cision of the measurements. A more demanding 
method would consist in altering the experimental 
design to correspond more closely to the objectives 
of the study. Prince & Nicholson (1985) address the 
problem of finding the reflections that should be 
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measured more precisely in order to enhance par- 
ticular features. 

Obtaining an unweighted least-squares fit between 
observed and calculated IF[ 2 is equivalent to obtain- 
ing an unweighted least-squares fit between observed 
and calculated Patterson functions. Similarly, obtain- 
ing an unweighted least-squares fit on the [Fl's is 
almost equivalent to obtaining an unweighted least- 
squares fit between observed and calculated electron 
densities (Wilson, 1976a). 

Special weighting schemes permit more accurate 
fitting of the electron densities at the atomic sites. 
Thus, Cochran (1948, 1951) showed that refinement 
on the [Fl's with weights inversely proportional to 
the reciprocal of the atomic scattering factor of an 
atom gives the coordinates of the maximum of its 
electron density as represented by a Fourier series. 
In the presence of several types of atoms, weighting 
with the reciprocal of a mean scattering factor is 
probably a satisfactory approximation. Similarly, the 
weighting scheme of Dunitz & Seiler (1973) designed 
to determine more accurately the coordinates of the 
atomic centers also emphasizes high-order reflections. 

Bernardinelli & Flack (1985) have designed weights 
that enhance the sensitivity of a refinement to the 
centrosymmetric or antisymmetric parts of the elec- 
tron density, and also to the absolute structure. They 
are useful in resolving ambiguities between centro- 
and non-centrosymmetric structures and mainly affect 
weak reflections, the importance of which in such 
problems has been pointed outby Marsh (1981, 1986). 
Weak reflections are also critically important in the 
refinement of superstructures, and weighting schemes 
are easily designed to enhance their contribution to 
the normal equations. 

Recommendations 

It is not realistic to expect that a statistical procedure 
can prevent or identify careless work. Thus, published 
lattice constants with reasonably small e.s.d.'s may 
be grossly in error, owing to a variety of causes (cf 
Parrish, 1960). Only independent redeterminations 
may show this. Thoughtless use of established pro- 
cedures in widely distributed software may be as harm- 
ful as the natural tendency of most people to prefer 
results in agreement with preconceived ideas. Note, 
however, that preconceived ideas are an ingredient 
of Bayesian statistics. Since the precision may be 
evaluated with greater confidence than the accuracy, 
it is not surprising that the results of independent 
determinations of the same structure may differ by 
much more, and hardly ever by less than is allowed 
by statistical tests. Inter-determination goodness-of-fit 
values can give an indication of the average dis- 
crepancies to be expected (Taylor & Kennard, 1986). 
The following recommendations are intended to pro- 

duce more meaningful results from structure determi- 
nations: 

1. All reflections to be used in the refinement pro- 
cess should be measured more than once, preferably 
in more than one symmetry-equivalent position. A 
fixed length of time allotted to an experiment is better 
used for rapid measurement of symmetry-equivalent 
reflections or for integrated intensity measurements 
made at different values of the azimuthal angle than 
for more precise measurements limited to a single 
independent portion of reciprocal space (Ibers, 1967; 
Hamor, Steinfink & Willis, 1985). (It should be noted 
that additional measurements on a different crystal 
using perhaps a different radiation can also be very 
revealing concerning the accuracy of refined para- 
meters.) 

2. If possible, the shape of the sample crystal 
should routinely be measured and absorption correc- 
tions applied. 

3. Estimated variances of the intensities should not 
be based on counting statistics alone. They should at 
least take into account the variation of several periodi- 
cally measured check reflections, which indicate a 
possible minimal value of k in (20). In the case of 
averaged intensities, differences among absorption- 
corrected symmetry-equivalent data and measure- 
ments at different values of the azimuthal angle can 
be used in the estimation. It is an act of faith to 
assume that these differences are equivalent to ran- 
dom fluctuations, but the uncertainty can be no less 
than that inferred from this assumption. 

4. Measured and calculated values of I, ]FI 2 or ]F], 
with e.s.d.'s for all measured values, should be pro- 
vided to referees. Any serious discrepancies between 
measured and calculated values should be noted and 
commented upon in the text. Calculated values need 
not be deposited. 

5. E.s.d.'s of derived quantities like angles and 
bond lengths should be calculated using the full vari- 
ance-covariance matrix of the refined parameters. 
The programming effort and additional calculation 
time necessary for a full variance-covariance propa- 
gation-of-error analysis are very well rewarded by 
greatly improved estimated standard deviations. In 
some cases, e.g. in the presence of pseudo-symmetry, 
the use of the full variance-covariance matrix must 
even be considered mandatory. 

6. All intensities or structure amplitudes should be 
included in the refinement. Omitting weak reflections 
often has little effect on the results (Seller, Schweizer 
& Dunitz, 1984; Wang, Barton & Robertson, 1986). 
However, weak reflections may contain important 
information: they may be vitally important when a 
choice is to be made between a centrosymmetric and 
a non-centrosymmetric model (Marsh, 1981, 1986), 
and when refining superstructures. Intensities 
measured as negative may be left negative in the 
refinement (Hirshfeld & Rabinovich, 1973). Setting 
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them to zero (after averaging) is advocated with the 
argument that even a perfect model cannot reproduce 
negative intensities. They may also be set to positive 
values by a Bayesian procedure (French & Wilson, 
1978). For further discussion of weak reflections see 
the section Refinement on I, Ill 2 or IFI?. 

7. It is of utmost importance to resolve any space- 
group ambiguities, and in particular to ascertain the 
presence or absence of a center of symmetry. The 
methods for doing this fall into two classes: 
(i) Modern statistical tests operating on diffraction 
data 

Tests based on the Wilson (1949) statistics using 
complete sets of intensity data perform remarkably 
well for structures containing a large number of not 
too dissimilar atoms which occupy general positions 
in the asymmetric unit of the space group. An addi- 
tional requirement is the absence of non-crystallo- 
graphic symmetry. 

Approximate methods which may cope with the 
presence of outstandingly heavy atoms were brought 
to a form applicable to all space groups by Shmueli 
& Wilson (1981) and Shmueli & Kaldor (1981, 1983). 
In practice, these methods may fail for low-symmetry 
structures with extreme atomic heterogeneities. 

Exact probability distributions of structure ampli- 
tudes which are formulated as Fourier series and can 
be computed to any precision are now available for 
low-symmetry space groups (Shmueli, Weiss, Kiefer 
& Wilson 1984; Shmueli & Weiss, 1987). They allow 
for hypercentric distributions (Shmueli, Weiss & 
Kiefer, 1985), and for heavy scatterers in special 
positions (Shmueli & Weiss, 1988). These methods 
account correctly for any atomic heterogeneity. 
(ii) Measurement of  symmetry-dependent physical 
properties 

These properties include crystal morphology, etch 
figures, optical activity, pyroelectricity and piezoelec- 
tricity ( In ternational Tables for Crystallography, 1983), 
which generally require the availability of single crys- 
tals with no linear dimension less than about 2 mm. 
The most powerful and discriminating test rests upon 
detection of the generation of second harmonics, see 
for example Dougherty & Kurtz (1976). This method 
requires only the availability of a microcrystalline 
sample. All these methods may reveal the absence, 
but not the presence, of a center of symmetry. 

8. The technique of multiplying the terms of the 
estimated variance-covariance matrix of the model 
parameters by the square of the value of the goodness 
of fit involves a highly questionable assumption. In 
general, variances should not be adjusted to modify 
the goodness of fit. The goodness of fit should be 
reported in publications. 

9. Reliability indices like R, wR and goodness of  
fit S give a global measure of fit. They are not well 
suited for testing certain properties of the structure, 
such as polarity, absolute configuration or the pres- 

ence of a center of symmetry. An improved global fit 
obtained by modifying one of these properties rep- 
resents also all concomitant changes of the refined 
parameters and may not indicate the correctness of 
the modification. Rather, the property should be rep- 
resented by a single refinable parameter, whose 
refined value and e.s.d, is much more indicative. This 
has been successfully done for the determination of 
absolute configuration and polarity (Rogers, 1981; 
Flack, 1983). 

It is a pleasure to thank our colleagues associated 
with the IUCr and particularly Dr D. J. Finney of 
the International Statistical Institute for clarifying 
comments on an earlier draft. 
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A b s t r a c t  

Two-dimensional (Ato, A20) intensity distributions in 
the plane of diffraction are calculated for the case of 
crystal-monochromated X-radiation incident on a 

small specimen. The calculations are based on ray 
tracing and take into account the mosaic spread of 
the monochromator, depth of penetration into the 
monochromator, source emissivity distribution, 
wavelength distribution, broadening due to the 
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