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1.6. Methods of space-group determination

U. Shmueli, H. D. Flack and J. C. H. Spence

1.6.1. Overview

This chapter describes and discusses several methods of

symmetry determination of single-domain crystals. A detailed

presentation of symmetry determination from diffraction data is

given in Section 1.6.2.1, followed by a brief discussion of intensity

statistics, ideal as well as non-ideal, with an application of the

latter to real intensity data from a P1 crystal structure in Section

1.6.2.2. Several methods of retrieving symmetry information from

a solved crystal structure are then discussed (Section 1.6.2.3).

This is followed by a discussion of chemical and physical

restrictions on space-group symmetry (Section 1.6.2.4), including

some aids in symmetry determination, and by a brief section on

pitfalls in space-group determination (Section 1.6.2.5).

The following two sections deal with reflection conditions.

Section 1.6.3 presents the theoretical background of conditions

for possible general reflections and their corresponding deriva-

tion. A brief discussion of special reflection conditions is

included. Section 1.6.4 presents an extensive tabulation of

general reflection conditions and possible space groups.

Other methods of space-group determination are presented in

Section 1.6.5. Section 1.6.5.1 deals with an account of methods of

space-group determination based on resonant (also termed

‘anomalous’) scattering. Section 1.6.5.2 is a brief description of

approaches to space-group determination in macromolecular

crystallography. Section 1.6.5.3 deals with corresponding

approaches in powder-diffraction methods.

The chapter concludes with a description and illustration of

symmetry determination based on electron-diffraction methods

(Section 1.6.6), and principally focuses on convergent-beam

electron diffraction.

This chapter deals only with single crystals. A supplement

(Flack, 2015) deals with twinned crystals and those displaying a

specialized metric.

1.6.2. Symmetry determination from single-crystal studies

By U. Shmueli and H. D. Flack

1.6.2.1. Symmetry information from the diffraction pattern

The extraction of symmetry information from the diffraction

pattern takes place in three stages.

In the first stage, the unit-cell dimensions are determined and

analyzed in order to establish to which Bravais lattice the crystal

belongs. A conventional choice of lattice basis (coordinate

system) may then be chosen. The determination of the Bravais

lattice1 of the crystal is achieved by the process of cell reduction,

in which the lattice is first described by a basis leading to a

primitive unit cell, and then linear combinations of the unit-cell

vectors are taken to reduce the metric tensor (and the cell

dimensions) to a standard form. From the relationships amongst

the elements of the metric tensor, one obtains the Bravais lattice,

together with a conventional choice of the unit cell, with the aid

of standard tables. A detailed description of cell reduction is

given in Chapter 3.1 of this volume and in Part 9 of earlier

editions (e.g. Burzlaff et al., 2002). An alternative approach (Le

Page, 1982) seeks the Bravais lattice directly from the cell

dimensions by searching for all the twofold axes present. All

these operations are automated in software. Regardless of the

technique employed, at the end of the process one obtains an

indication of the Bravais lattice and a unit cell in a conventional

setting for the crystal system, primitive or centred as appropriate.

These are usually good indications which, however, must be

confirmed by an examination of the distribution of diffracted

intensities as outlined below.

In the second stage, it is the point-group symmetry of the

intensities of the Bragg reflections which is determined. We recall

that the average reduced intensity of a pair of Friedel opposites

(hkl and hkl) is given by

jFavðhÞj
2
¼ 1

2 ½jFðhÞj
2
þ jFðhÞj2�

¼
P

i;j

½ðfi þ f 0i Þðfj þ f 0j Þ þ f 00i f 00j � cos½2�hðri � rjÞ� � AðhÞ;

ð1:6:2:1Þ

where the atomic scattering factor of atom j, taking into account

resonant scattering, is given by

f j ¼ fj þ f 0j þ if 00j ;

the wavelength-dependent components f 0j and f 00j being the real

and imaginary parts, respectively, of the contribution of atom j to

the resonant scattering, h contains in the (row) matrix (1� 3) the

diffraction orders (hkl) and rj contains in the (column) matrix

(3 � 1) the coordinates ðxj; yj; zjÞ of atom j. The components of

the f j are assumed to contain implicitly the displacement para-

meters. Equation (1.6.2.1) can be found e.g. in Okaya & Pepinsky

(1955), Rossmann & Arnold (2001) and Flack & Shmueli (2007).

It follows from (1.6.2.1) that

jFavðhÞj
2
¼ jFavðhÞj

2 or AðhÞ ¼ AðhÞ;

regardless of the contribution of resonant scattering. Hence the

averaging introduces a centre of symmetry in the (averaged)

diffraction pattern.2 In fact, working with the average of Friedel

opposites, one may determine the Laue group of the diffraction

pattern by comparing the intensities of reflections which should

be symmetry equivalent under each of the Laue groups. These

are the 11 centrosymmetric point groups: 1, 2/m, mmm, 4/m,

4/mmm, 3, 3m, 6/m, 6/mmm, m3 and m3m. For example, the

reflections of which the intensities are to be compared for the

Laue group 3 are: hkl, kil, ihl, hkl, kil and ihl, where i ¼ �h � k.

An extensive listing of the indices of symmetry-related reflections

in all the point groups, including of course the Laue groups, is

1 The Bravais lattice symbol consists of two characters. The first is the first letter of
the name of a crystal family and the second is the centring mode of a conventional
unit cell. For details see Tables 3.1.2.1 and 3.1.2.2.

2 Wemust mention the well known Friedel’s law, which states that jFðhÞj2 = jFðhÞj2

and which is only a reasonable approximation for noncentrosymmetric crystals if
resonant scattering is negligibly small. This law holds well for centrosymmetric
crystals, independently of the resonant-scattering contribution.
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given in Appendix 1.4.4 of International Tables for Crystal-

lography Volume B (Shmueli, 2008).3 In the past, one used to

inspect the diffraction images to see which classes of reflections

are symmetry equivalent within experimental and other uncer-

tainty. Nowadays, the whole intensity data set is analyzed by

software. The intensities are merged and averaged under each of

the 11 Laue groups in various settings (e.g. 2/m unique axis b and

unique axis c) and orientations (e.g. 3m1 and 31m). For each

choice of Laue group and its variant, an Rmerge factor is calculated

as follows:

Rmerge;i ¼

P
h

PjGji
s¼1 jhjFavðhÞj

2
ii � jFavðhW siÞj

2
j

jGji
P

hhjFavðhÞj
2
ii

; ð1:6:2:2Þ

where W si is the matrix of the sth symmetry operation of the ith

Laue group, jGij is the number of symmetry operations in that

group, the average in the first term in the numerator and in the

denominator ranges over the intensities of the trial Laue group

and the outer summations
P

h range over the hkl reflections.

Choices with low Rmerge;i display the chosen symmetry, whereas

for those with high Rmerge;i the symmetry is inappropriate. The

Laue group of highest symmetry with a low Rmerge;i is considered

the best indication of the Laue group. Several variants of the

above procedure exist in the available software. Whichever of

them is used, it is important for the discrimination of the aver-

aging process to choose a strategy of data collection such that the

intensities of the greatest possible number of Bragg reflections

are measured. In practice, validation of symmetry can often be

carried out with a few initial images and the data-collection

strategy may be based on this assignment.

In the third stage, the intensities of the Bragg reflections are

studied to identify the conditions for systematic absences. Some

space groups give rise to zero intensity for certain classes of

reflections. These ‘zeros’ occur in a systematic manner and are

commonly called systematic absences (e.g. in the h0l class of

reflections, if all rows with l odd are absent, then the corre-

sponding reflection condition is h0l: l = 2n). In practice, as

implemented in software, statistics are produced on the intensity

observations of all possible sets of ‘reflections conditions’ as

given in Chapter 2.3 (e.g. in the example above, h0l reflections are

separated into sets with l = 2n and those with l = 2n + 1). In one

approach, the number of observations in each set having an

intensity (I) greater than n standard uncertainties [u(I)] [i.e.

I=uðIÞ> n] is displayed for various values of n. Clearly, if a trial

condition for systematic absence has observations with strong or

medium intensity [i.e. I=uðIÞ> 3], the systematic-absence condi-

tion is not fulfilled (i.e. the reflections are not systematically

absent). If there are no such observations, the condition for

systematic absence may be valid and the statistics for smaller

values of n need then to be examined. These are more proble-

matic to evaluate, as the set of reflections under examination may

have many weak reflections due to structural effects of the crystal

or to perturbations of the measurements by other systematic

effects. An alternative approach to examining numbers of

observations is to compare the mean value, hI=uðIÞi, taken over

reflections obeying or not a trial reflection condition. For a valid

reflection condition, one expects the former value to be consid-

erably larger than the latter. In Section 3.1 of Palatinus & van der

Lee (2008), real examples of marginal cases are described.

The third stage continues by noting that the systematic

absences are characteristic of the space group of the crystal,

although some sets of space groups have identical reflection

conditions. In Chapter 2.3 one finds all the reflection conditions

listed individually for the 230 space groups. For practical use in

space-group determination, tables have been set up that present a

list of all those space groups that are characterized by a given set

of reflection conditions. The tables for all the Bravais lattices and

Laue groups are given in Section 1.6.4 of this chapter. So, once

the reflection conditions have been determined, all compatible

space groups can be identified from the tables. Table 1.6.2.1 shows

that 85 space groups may be unequivocally determined by the

procedures defined in this section based on the identification of

the Laue group. For other sets of reflection conditions, there are a

larger number of compatible space groups, attaining the value of

6 in one case. It is appropriate at this point to anticipate the

results presented in Section 1.6.5.1, which exploit the resonant-

scattering contribution to the diffracted intensities and under

appropriate conditions allow not only the Laue group but also

the point group of the crystal to be identified. If such is the case,

the last line of Table 1.6.2.1 shows that almost all space groups

can be unequivocally determined. In the remaining 13 pairs of

space groups, constituting 26 space groups in all, there are the 11

enantiomorphic pairs of space groups [(P41–P43), (P4122–P4322),

(P41212–P43212), (P31–P32), (P3121–P3221), (P3112–P3212),

(P61–P65), (P62–P64), (P6122–P6522), (P6222–P6422) and

(P4132–P4332)] and the two exceptional pairs of I222 & I212121
and I23 & I213, characterized by having the same symmetry

elements in a different arrangement in space. These 13 pairs of

space groups cannot be distinguished by the methods described

in Sections 1.6.2 and 1.6.5.1, but may be distinguished when a

reliable atomic structural model of the crystal has been obtained.

On the other hand, all these 13 pairs of space groups can be

distinguished by the methods described in Section 1.6.6 and in

detail in Saitoh et al. (2001). It should be pointed out in

connection with this third stage that a possible weakness of the

analysis of systematic absences for crystals with small unit-cell

dimensions is that there may be a small number of axial reflec-

tions capable of being systematically absent.

It goes without saying that the selected space groups must be

compatible with the Bravais lattice determined in stage 1, with

the Laue class determined in stage 2 and with the set of space-

group absences determined in stage 3.

We thank L. Palatinus (2011) for having drawn our attention to

the unexploited potential of the Patterson function for the

determination of the space group of the crystal. The discovery of

Table 1.6.2.1
The ability of the procedures described in Sections 1.6.2.1 and 1.6.5.1 to
distinguish between space groups

The columns of the table show the number of sets of space groups that are
indistinguishable by the chosen technique, according to the number of space
groups in the set, e.g. for Laue-class discrimination, 85 space groups may be
uniquely identified, whereas there are 8 sets containing 5 space groups
indistinguishable by this technique. The tables in Section 1.6.4 contain 416
different settings of space groups generated from the 230 space-group types.

No. of space groups in set that are
indistinguishable by procedure used

1 2 3 4 5 6

No. of sets for Laue-class
discrimination

85 78 43 0 8 1

No. of sets for point-group
discrimination

390 13 0 0 0 0

3 The tables in Appendix 1.4.4 mentioned above actually deal with space groups in
reciprocal space; however, the left part of any entry is just the indices of a
reflection generated by the point-group operation corresponding to this entry.
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this method is due to Buerger (1946) and later obtained only a

one-sentence reference by Rogers (1950) and by Rossmann &

Arnold (2001). The method is based on the observation that

interatomic vectors between symmetry-related (other than by

inversion in a point) atoms cause peaks to accumulate in the

corresponding Harker sections and lines of the Patterson func-

tion. It is thus only necessary to find the location of those Harker

sections and lines that have a high concentration of peaks to

identify the corresponding symmetry operations of the space

group. At the time of its discovery, it was not considered an

economic method of space-group determination due to the

labour involved in calculating the Patterson function. Subse-

quently it was completely neglected and there are no recent

reports of its use. It is thus not possible to report on its strengths

and weaknesses in practical modern-day applications.

1.6.2.2. Structure-factor statistics and crystal symmetry

Most structure-solving software packages contain a section

dedicated to several probabilistic methods based on the Wilson

(1949) paper on the probability distribution of structure-factor

magnitudes. These statistics sometimes correctly indicate

whether the intensity data set was collected from a centrosym-

metric or noncentrosymmetric crystal. However, not infrequently

these indications are erroneous. The reasons for this may be

many, but outstandingly important are (i) the presence of a few

very heavy atoms amongst a host of lighter ones, and (ii) a very

small number of nearly equal atoms. Omission of weak reflections

from the data set also contributes to failures of Wilson (1949)

statistics. These erroneous indications are also rather strongly

space-group dependent.

The well known probability density functions (hereafter

p.d.f.’s) of the magnitude of the normalized structure factor E,

also known as ideal p.d.f.’s, are

pðjEjÞ ¼

ffiffiffiffiffiffiffiffi
2=�

p
exp �jEj2=2

� �
for P1

2jEj expð�jEj2Þ for P1

�

; ð1:6:2:3Þ

where it is assumed that all the atoms are of the same chemical

element. Let us see their graphical representations.

It is seen from Fig. 1.6.2.1 that the two p.d.f.’s are significantly

different, but usually they are not presented as such by the

software. What is usually shown are the cumulative distributions

of jEj2, the moments: hjEjni for n = 1, 2, 3, 4, 5, 6, and the averages

of low powers of jE2 � 1j for ideal centric and acentric distri-

butions, based on equation (1.6.2.3). Table 1.6.2.2 shows the

numerical values of several low-order moments of jEj and that of

the lowest power of jE2 � 1j. The higher the value of n the

greater is the difference between their values for centric and

acentric cases. However, it is most important to remember that

the influence of measurement uncertainties also increases with n

and therefore the higher the moment the less reliable it tends to

be.

There are several ideal indicators of the status of centrosym-

metry of a crystal structure. The most frequently used are: (i)

the N(z) test (Howells et al., 1950), a cumulative distribution of

z ¼ jEj2, based on equation (1.6.2.3), and (ii) the low-order

moments of jEj, also based on equation (1.6.2.3). Equation

(1.6.2.3), however, is very seldom used as an indicator of the

status of centrosymmetry of a crystal stucture.

Let us now briefly consider p.d.f.’s that are valid for any atomic

composition as well as any space-group symmetry, and exemplify

their performance by comparing a histogram derived from

observed intensities from a P1 structure with theoretical p.d.f.’s

for the space groups P1 and P1. The p.d.f.’s considered presume

that all the atoms are in general positions and that the reflections

considered are general (see, e.g., Section 1.6.3). A general

treatment of the problem is given in the literature and summar-

ized in the book Introduction to Crystallographic Statistics

(Shmueli & Weiss, 1995).

The basics of the exact p.d.f.’s are conveniently illustrated in

the following. The normalized structure factor for the space

group P1, assuming that all the atoms occupy general positions

and resonant scattering is neglected, is given by

EðhÞ ¼ 2
PN=2

j¼1

nj cosð2�hrjÞ;

where nj is the normalized scattering factor. The maximum

possible value of E is Emax ¼
PN

j¼1 nj and the minimum possible

value of E is �Emax. Therefore, EðhÞ must be confined to the

ð�Emax;EmaxÞ range. The probability of finding E outside this

range is of course zero. Such a probability density function can be

expanded in a Fourier series within this range (cf. Shmueli et al.,

1984). This is the basis of the derivation, the details of which are

well documented (e.g. Shmueli et al., 1984; Shmueli & Weiss,

1995; Shmueli, 2007). Exact p.d.f.’s for any centrosymmetric space

group have the form

pðjEjÞ ¼ � 1þ 2
P1

m¼1

Cm cosð�mjEj�Þ

� �

; ð1:6:2:4Þ

where � ¼ 1=Emax, and exact p.d.f.’s for any noncentrosymmetric

space group can be computed as the double Fourier series

pðjEjÞ ¼ 1
2��

2jEj
P1

m¼1

P1

n¼1

CmnJ0½��jEjðm
2 þ n2Þ

1=2
�; ð1:6:2:5Þ

where J0ðXÞ is a Bessel function of the first kind and of order

zero. Expressions for the coefficients Cm and Cmn are given by

Figure 1.6.2.1
Ideal p.d.f.’s for the equal-atom case. The dashed line is the centric, and
the solid line the acentric ideal p.d.f.

Table 1.6.2.2
The numerical values of several low-order moments of jEj, based on
equation (1.6.2.3)

Moment P1 P1

hjEji 0.798 0.886
hjEj2i 1.000 1.000
hjEj3i 1.596 1.329
hjEj4i 3.000 2.000
hjEj5i 6.383 3.323
hjEj6i 15.000 6.000
hjE2 � 1ji 0.968 0.736
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Rabinovich et al. (1991) and by Shmueli & Wilson (2008) for all

the space groups up to and including Fd3.

The following example deals with a very high sensitivity

to atomic heterogeneity. Consider the crystal structure

of [(Z)-ethyl N-isopropylthiocarbamato-�S](tricyclohexylphos-

phine-�P)gold(I), published as P1 with Z = 2, the content of its

asymmetric unit being AuSPONC24H45 (Tadbuppa & Tiekink,

2010). Let us construct a histogram from the jEj data computed

from all the observed reflections with non-negative reduced

intensities and compare the histogram with the p.d.f.’s for the

space groups P1 and P1, computed from equations (1.6.2.5) and

(1.6.2.4), respectively. The histogram and the p.d.f.’s were put on

the same scale. The result is shown in Fig. 1.6.2.2.

A visual comparison strongly indicates that the space-group

assignment as P1 was correct, since the recalculated histogram

agrees rather well with the p.d.f. (1.6.2.4) and much less with

(1.6.2.5). The ideal Wilson-type statistics incorrectly indicated

that this crystal is noncentrosymmetric. It is seen that the ideal

p.d.f. breaks down in the presence of strong atomic heterogeneity

(gold among many lighter atoms) in the space group P1. Other

space groups behave differently, as shown in the literature (e.g.

Rabinovich et al., 1991; Shmueli & Weiss, 1995).

Additional examples of applications of structure-factor statis-

tics and some relevant computing considerations and software

can be found in Shmueli (2012) and Shmueli (2013).

1.6.2.3. Symmetry information from the structure solution

It is also possible to obtain information on the symmetry of the

crystal after structure solution. The latter is obtained either in

space group P1 (i.e. no symmetry assumed) or in some other

candidate space group. The analysis may take place either on the

electron-density map, or on its interpretation in terms of atomic

coordinates and atomic types (i.e. chemical elements). The

analysis of the electron-density map has become increasingly

popular with the advent of dual-space methods, first proposed in

the charge-flipping algorithm by Oszlányi & Süto�� (2004), which
solve structures in P1 by default. The analysis of the atomic

coordinates and atomic types obtained from least-squares

refinement in a candidate space group is used extensively in

structure validation. Symmetry operations present in the struc-

ture solution but not in the candidate space group are sought.

An exhaustive search for symmetry operations is undertaken.

However, those to be investigated may be very efficently limited

by making use of knowledge of the highest point-group symmetry

of the lattice compatible with the known cell dimensions of the

crystal. It is well established that the point-group symmetry of

any lattice is one of the following seven centrosymmetric point

groups: 1, 2/m, mmm, 4/mmm, 3m, 6/mmm, m3m. This point

group is known as the holohedry of the lattice. The relationship

between the symmetry operations of the space group and its

holohedry is rather simple. A rotation or screw axis of symmetry

in the crystal has as its counterpart a corresponding rotation axis

of symmetry of the lattice and a mirror or glide plane in the

crystal has as its counterpart a corresponding mirror plane in the

lattice. The holohedry may be equal to or higher than the point

group of the crystal. Hence, at least the rotational part of any

space-group operation should have its counterpart in the

symmetry of the lattice. If and when this rotational part is found

by a systematic comparison either of the electron density or of

the positions of the independent atoms of the solved structure,

the location and intrinsic parts of the translation parts of the

space-group operation can be easily completed.

Palatinus and van der Lee (2008) describe their procedure in

detail with useful examples. It uses the structure solution both in

the form of an electron-density map and a set of phased structure

factors obtained by Fourier transformation. No interpretation of

the electron-density map in the form of atomic coordinates and

chemical-element type is required. The algorithm of the proce-

dure proceeds in the following steps:

(1) The lattice centring is determined by a search for strong

peaks in the autocorrelation (self-convolution, Patterson)

function of the electron density and the potential centring

vectors are evaluated through a reciprocal-space R value.

(2) A complete list of possible symmetry operations compatible

with the lattice is generated by searching for the invariance of

the direct-space metric under potential symmetry operations.

(3) A figure of merit is then assigned to each symmetry operation

evaluated from the convolution of the symmetry-transformed

electron density with that of the structure solution. Those

symmetry operations that have a good figure of merit are

selected as belonging to the space group of the crystal

structure.

(4) The space group is completed by group multiplication of the

selected operations and then validated.

(5) The positions of the symmetry elements are shifted to those

of a conventional setting for the space group.

Palatinus & van der Lee (2008) report a very high success rate in

the use of this algorithm. It is also a powerful technique to apply

in structure validation.

Le Page’s (1987) pioneering software MISSYM for the

detection of ‘missed’ symmetry operations uses refined atomic

coordinates, unit-cell dimensions and space group assigned from

the crystal-structure solution. The algorithm follows all the

principles described above in this section. In MISSYM, the metric

symmetry is established as described in the first stage of Section

1.6.2.1. The ‘missed’ symmetry operations are those that are

present in the arrangement of the atoms but are not part of the

space group used for the structure refinement. Indeed, this

procedure has its main applications in structure validation. The

algorithm used in Le Page’s software is also implemented in

ADDSYM (Spek, 2003). There are numerous reports of

successful applications of this software in the literature.

Figure 1.6.2.2
Exact p.d.f.’s. for a crystal of [(Z)-ethyl N-isopropylthiocarbamato-
�S](tricyclohexylphosphine-�P)gold(I) in the triclinic system. Solid
curve: P1, computed from (1.6.2.4); dashed curve: P1, computed from
(1.6.2.5); histogram based on the data computed from all the reflections
with non-negative reduced intensities. The height of each bin
corresponds to the number of reflections (NREF) in its range of jEj
values. The p.d.f.’s are scaled up to the histogram.
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1.6.2.4. Restrictions on space groups

The values of certain chemical and physical properties of a

bulk compound, or its crystals, have implications for the assign-

ment of the space group of a crystal structure. In the chemical

domain, notably in proteins and small-molecule natural products,

information concerning the enantiomeric purity of the bulk

compound or of its individual crystals is most useful. Further, all

physical properties of a crystal are limited by the point group of

the crystal structure in ways that depend on the individual nature

of the physical property.

It is very well established that the crystal structure of an

enantiomerically pure compound will be chiral (see Flack, 2003).

By an enantiomerically pure compound one means a compound

whose molecules are all chiral and all these molecules possess the

same chirality. The space group of a chiral crystal structure will

only contain the following types of symmetry operation: trans-

lations, pure rotations and screw rotations. Inversion in a point,

mirror reflection or rotoinversion do not occur in the space group

of a chiral crystal structure. Taking all this together means that

the crystal structure of an enantiomerically pure compound will

show one of 65 space groups (known as the Sohncke space

groups), all noncentrosymmetric, containing only translations,

rotations and screw rotations. As a consequence, the point group

of a chiral crystal structure is limited to the 11 point groups

containing only pure rotations (i.e. 1, 2, 222, 4, 422, 3, 32, 6, 622,

23 and 432). Particular attention must be paid as to whether a

measurement of enantiomeric purity of a compound applies to

the bulk material or to the single crystal used for the diffraction

experiment. Clearly, a compound whose bulk is enantiomerically

pure will produce crystals which are enantiomerically pure. The

converse is not necessarily true (i.e. enantiomerically pure crys-

tals do not necessarily come from an enantiomerically pure bulk).

For example, a bulk compound which is a racemate (i.e. an

enantiomeric mixture containing 50% each of the opposite

enantiomers) may produce either (a) crystals of the racemic

compound (i.e. crystals containing 50% each of the opposite

enantiomers) or (b) a racemic conglomerate (i.e. a mixture of

enantiomerically pure crystals in a proportion of 50% of each

pure enantiomer) or (c) some other rarer crystallization modes.

Consequently, as part of a single-crystal structure analysis, it is

highly recommended to make a measurement of the enantio-

meric purity of the single crystal used for the diffraction

experiment.

Much information on methods of establishing the enantio-

meric purity of a compound can be found in a special issue of

Chirality devoted to the determination of absolute configuration

(Allenmark et al., 2007). Measurements in the fluid state of

optical activity, optical rotatory dispersion (ORD), circular

dichroism (CD) and enantioselective chromatography are of

prime importance. Many of these are sufficiently sensitive to be

applicable not only to the bulk compound but also to the single

crystal used for the diffraction experiment taken into solution.

CD may also be applied in the solid state.

Many physical properties of a crystalline solid are anisotropic

and the symmetry of a physical property of a crystal is limited

both by the point-group symmetry of the crystal and by

symmetries inherent to the physical property under study. For

further information on this topic see Part 1 of Volume D (Authier

et al., 2014). Unfortunately, many of these physical properties are

intrinsically centrosymmetric, so few of them are of use in

distinguishing between the subgroups of a Laue group, a common

problem in space-group determination. In Chapter 3.2 of the

present volume, Hahn & Klapper show to which point groups

a crystal must belong to be capable of displaying some of

the principal physical properties of crystals (Table 3.2.2.1).

Measurement of morphology, pyroelectricity, piezoelectricity,

second harmonic generation and optical activity of a crystalline

sample can be of use.

1.6.2.5. Pitfalls in space-group determination

The methods described in Sections 1.6.2 and 1.6.5.1 rely on the

crystal measured being a single-domain crystal, i.e. it should not

be twinned. Nevertheless, some types of twin are easily identified

at the measurement stage as they give rise to split reflections.

Powerful data-reduction techniques may be applied to data from

such crystals to produce a reasonably complete single-domain

intensity data set. Consequently, the multi-domain twinned

crystals that give rise to difficulties in space-group determination

are those for which the reciprocal lattices of the individual

domains overlap exactly without generating any splitting of the

Bragg reflections. A study of the intensity data from such a crystal

may display two anomalies. Firstly, the intensity distribution, as

described and analysed in Section 1.6.2.2, will be broader than

that of the monodomain crystal. Secondly, one may obtain a set of

conditions for reflections that does not correspond to any entry in

Section 1.6.4. In this chapter we give no further information on

the determination of the space group for such twinned crystals.

For further information on this topic see Part 3 of Volume D

(Boček et al., 2006) and Chapter 1.3 on twinning in Volume C

(Koch, 2006). A supplement (Flack, 2015) to the current section

deals with the determination of the space group from twinned

crystals and those displaying a specialized metric. However, it is

apposite to note that the existence of twins with overlapping

reciprocal lattices can be identified by recording atomic resolu-

tion transmission electron-microscope images.

In order to obtain reliable results from space-group determi-

nation, the coverage of the reciprocal space by the intensity

measurements should be as complete as possible. One should

attempt to attain full-sphere data coverage, i.e. a complete set of

intensity measurements in the point group 1. All Friedel oppo-

sites should be measured. The validity and reliability of the

intensity statistics described in Section 1.6.2.2 rest on a full

coverage of reciprocal lattice. Any systematic omission by reso-

lution, azimuth and declination, intensity etc. of part of the

asymmetric region of the reciprocal lattice has an adverse effect.

In particular, reflections of weak intensity should not be omitted

or deleted.

There are a few other common difficulties in space-group

determination due either to the nature of the crystal or the

experimental setup:

(a) The crystal may display a pseudo-periodicity leading to

systematic series of weak or very weak reflections that can be

mistaken for systematic absences.

(b) The physical effect of multiple reflections can lead to

diffraction intensity appearing at the place of systematic

absences. However, the shape of these multiple-reflection

intensities is usually much sharper than a normal Bragg

reflection.

(c) Contamination of the incident radiation by a �=2 component

may also cause intensity due to the 2h 2k 2l reflection to

appear at the place of the hkl one. Kirschbaum et al. (1997)

and Macchi et al. (1998) have studied this probem and

describe ways of circumventing it.
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1.6.3. Theoretical background of reflection conditions

By U. Shmueli

We shall now examine the effect of the space-group symmetry on

the structure-factor function. These effects are of importance in

the determination of crystal symmetry. If ðW ;wÞ is the matrix–

column pair of a representative symmetry operation of the space

group of the crystal, then, by definition

�ðxÞ ¼ �ðWx þ wÞ; ð1:6:3:1Þ

where �ðxÞ is the value of the electron-density function at the

point with coordinates x, W is a matrix of proper or improper

rotation and w is a translation part (cf. Section 1.2.2.1). It is

known that the electron-density function at the point x is given by

�ðxÞ ¼
1

V

X

h

FðhÞ expð�2�ihxÞ; ð1:6:3:2Þ

where, in this and the following equations, h is the row matrix

ðh k lÞ and x is a column matrix containing x, y and z in the first,

second and third rows, respectively. Of course, hx is simply

equivalent to hx þ ky þ lz. If we substitute (1.6.3.2), with x

replaced by ðWx þ wÞ in (1.6.3.1) we obtain, after some calcu-

lation,

FðhW Þ ¼ FðhÞ expð�2�ihwÞ: ð1:6:3:3Þ

Equation (1.6.3.3) is the fundamental relation between

symmetry-related reflections (e.g. Waser, 1955; Wells, 1965; and

Chapter 1.4 in Volume B). If we write FðhÞ ¼ jFðhÞj exp½i’ðhÞ�,
equation (1.6.3.3) leads to the following relationships:

jFðhW Þj ¼ jFðhÞj ð1:6:3:4Þ

and

’ðhW Þ ¼ ’ðhÞ � 2�hw: ð1:6:3:5Þ

Equation (1.6.3.4) indicates the equality of the intensities of truly

symmetry-related reflections, while equation (1.6.3.5) relates the

phases of the corresponding structure factors. The latter equation

is of major importance in direct methods of phase determination

[e.g. Chapter 2.2 in Volume B (Giacovazzo, 2008)].

We can now approach the problem of systematically absent

reflections, which are alternatively called the conditions for

possible reflections.

The reflection h is general if its indices remain unchanged only

under the identity operation of the point group of the diffraction

pattern. I.e., if W is the matrix of the identity operation of the

point group, the relation hW ¼ h holds true. So, if the reflection h

is general, we must have W � I, where I is the identity matrix

and, obviously, hI ¼ h. The operation ðI;wÞ can be a space-group
symmetry operation only if w is a lattice vector. Let us denote it

by wL. Equation (1.6.3.3) then reduces to

FðhÞ ¼ FðhÞ expð�2�ihwLÞ ð1:6:3:6Þ

and FðhÞ can be nonzero only if expð�2�ihwLÞ ¼ 1. This, in turn,

is possible only if hwL is an integer and leads to conditions

depending on the lattice type. For example, if the components of

wL are all integers, which is the case for a P-type lattice, the above

condition is fulfilled for all h – the lattice type does not impose

any restrictions. If the lattice is of type I, there are two lattice

points in the unit cell, at say 0, 0, 0 and 1/2, 1/2, 1/2. The first of

these does not lead to any restrictions on possible reflections. The

second, however, requires that exp½��iðh þ k þ lÞ� be equal to

unity. Since expð�inÞ ¼ ð�1Þn, where n is an integer, the possible

reflections from a crystal with an I-type lattice must have indices

such that their sum is an even integer; if the sum of the indices is

an odd integer, the reflection is systematically absent. In this way,

we examine all lattice types for conditions of possible reflections

(or systematic absences) and present the results in Table 1.6.3.1.

The reflection h is special if it remains unchanged under at least

one operation of the point group of the diffraction pattern in

addition to its identity operation. I.e., the relation hW ¼ h holds

true for more than one operation of the point group. We shall

now assume that the reflection h is special. By definition, this

reflection remains invariant under more than one operation of

the point group of the diffraction pattern. These operations form

a subgroup of the point group of the diffraction pattern, known as

the stabilizer (formerly called the isotropy subgroup) of the

reflection h, and we denote it by the symbol Sh. For each space-

group symmetry operation (W ;wÞ where W is the matrix of an

element of Sh we must therefore have hW ¼ h. Equation

(1.6.3.3) now reduces to

FðhÞ ¼ FðhÞ expð�2�ihwÞ: ð1:6:3:7Þ

Of course, if W represents the identity operation, w must be a

lattice vector and the discussion summarized in Table 1.6.3.1

applies. We therefore require that W is the matrix of an element

of Sh other than the identity. FðhÞ can be nonzero only if the

exponential factor in (1.6.3.7) equals unity. This, in turn, is

possible only if hw is an integer.

Let us consider a monoclinic crystal with P-type lattice (i.e.

with an mP-type Bravais lattice) and a c-glide reflection as an

example. Assuming b perpendicular to the ac plane, the ðW ;w)
representation of c is given by

c:
1 0 0

0 1 0

0 0 1

0

@

1

A;
0

y

1=2

0

@

1

A

2

4

3

5:

The indices of reflections that remain unchanged under the

application of the mirror component of the glide-reflection

operation must be h0l. The translation part of the c-glide-

reflection operation has the form (0, y, 1/2), where y = 0 corre-

sponds to the plane passing through the origin. Hence, for any

value of y, the scalar product hw is l/2 and the necessary condition

for a nonzero value of an h0l reflection is l = 2n, where n is an

integer. Intensities of h0l reflections with odd l will be system-

atically absent.

Table 1.6.3.2 shows the effect of some glide reflections on

reflection conditions.4

Let us now assume a crystal with an mP-type Bravais lattice

and a twofold screw axis taken as being parallel to b. The (W ;wÞ
representation of the corresponding screw rotation is given by

21:
1 0 0

0 1 0

0 0 1

0

@

1

A;
x

1=2
z

0

@

1

A

2

4

3

5:

The diffraction indices that remain unchanged upon the appli-

cation of the rotation part of 21 must be of the form (0k0). The

translation part of the screw operation is of the form (x, 1/2, z),

where the values of x and z depend on the location of the origin.

Hence, for any values of x and z the scalar product hw is k/2 and

the necessary condition for a nonzero value of a 0k0 reflection is

4 The reflection condition in the fourth line of Table 1.6.3.2 is a consequence of the
fact that a d glide appears only with Bravais lattices of types I and F.
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k = 2n. 0k0 reflections with odd k will be systematically absent. A

brief summary of the effects of various screw rotations on the

conditions for possible reflections from the corresponding special

subsets of hkl is given in Table 1.6.3.3. Note, however, that while

the presence of a twofold screw axis parallel to b ensures the

condition 0k0: k = 2n, the actual observation of such a condition

can be taken as an indication but not as absolute proof of the

presence of a screw axis in the crystal.

It is interesting to note that some diagonal screw axes do not

give rise to conditions for possible reflections. For example, letW

be the matrix of a threefold rotation operation parallel to [111]

and wT be given by (1/3, 1/3, 1/3). It is easy to show that the

diffraction vector that remains unchanged when postmultiplied

by W has the form h ¼ ðhhhÞ and, obviously, for such h and w,

hw ¼ h. Since this scalar product is an integer there are,

according to equation (1.6.3.7), no values of the index h for which

the structure factor FðhhhÞ must be absent.

A short discussion of special reflection conditions

The conditions for possible reflections arising from lattice

types, glide reflections and screw rotations are related to general

equivalent positions and are known as general reflection condi-

tions. There are also special or ‘extra’ reflection conditions that

arise from the presence of atoms in special positions. These

conditions are observable if the atoms located in special positions

are much heavier than the rest. The

minimal special conditions are listed in the

space-group tables in Chapter 2.3. They can

sometimes be understood if the geometry

of a given specific site is examined. For

example, Wyckoff position 4i in space

group P4222 (93) can host four atoms, at

coordinates

4i: 0; 12 ; z; 1
2 ; 0; z þ 1

2 ; 0; 12 ; z; 1
2 ; 0; z þ 1

2 :

It is seen that the second and fourth coor-

dinates are obtained from the first and third

coordinates, respectively, upon the addition

of the vector tð12 ;
1
2 ;

1
2Þ. An additional I-

centring is therefore present in this set of

special positions. Hence, the special reflec-

tion condition for this set is hkl:

h þ k þ l ¼ 2n.

It should be pointed out, however, that only the general

reflection conditions are used for a complete or partial deter-

mination of the space group and that the special reflection

conditions only apply to spherical atoms. By the latter assump-

tion we understand not only the assumption of spherical distri-

bution of the atomic electron density but also isotropic

displacement parameters of the equivalent atoms that belong to

the set of corresponding special positions.

One method of finding the minimal special reflection condi-

tions for a given set of special positions is the evaluation of the

trigonometric structure factor for the set in question. For

example, consider the Wyckoff position 4c of the space group

Pbcm (57). The coordinates of the special equivalent positions

are

4c: x; 14 ; 0; x; 34 ;
1
2 ; x; 34 ; 0; x; 14 ;

1
2

and the corresponding trigonometric structure factor is

SðhÞ ¼ exp 2�i hx þ
k

4

� �� 	

þ exp 2�i �hx þ
3k

4
þ

l

2

� �� 	

þ exp 2�i �hx þ
3k

4

� �� 	

þ exp 2�i hx þ
k

4
þ

l

2

� �� 	

:

It can be easily shown that

SðhÞ ¼ 2 cos 2� hx þ
k

4

� �� 	

½1þ expð�ilÞ�

and the last factor equals 2 for l even and equals zero for l odd.

The special reflection condition is therefore: hkl: l ¼ 2n.

Another approach is provided by considerations of the

eigensymmetry group and the extraordinary orbits of the space

group (see Section 1.4.4.4). We recall that the eigensymmetry

group is a group of all the operations that leave the orbit of a

point under the space group considered invariant, and the

extraordinary orbit is associated with the eigensymmetry group

that contains translations not present in the space group (see

Chapter 1.4). In the above example the orbit is extraordinary,

since its eigensymmetry group contains a translation corre-

sponding to 1
2 c. If this is taken as a basis vector, we have the Laue

equation 1
2 c � h ¼ l0, where h is represented as a reciprocal-lattice

vector and l0 is an integer which also equals l/2. But for l/2 to be

an integer we must have even l. We again obtain the condition

hkl: l ¼ 2n.

Table 1.6.3.1
Effect of lattice type on conditions for possible reflections

Lattice
type wT

L hwL Conditions for possible reflections

P (0, 0, 0) Integer None

A ð0; 12 ;
1
2Þ ðk þ lÞ=2 hkl: k þ l ¼ 2n

B ð12 ; 0;
1
2Þ ðh þ lÞ=2 hkl: h þ l ¼ 2n

C ð12 ;
1
2 ; 0Þ ðh þ kÞ=2 hkl: h þ k ¼ 2n

I ð12 ;
1
2 ;

1
2Þ ðh þ k þ lÞ=2 hkl: h þ k þ l ¼ 2n

F ð0; 12 ;
1
2Þ ðk þ lÞ=2 h, k and l are all even or all odd (simultaneous

fulfillment of the conditions for types A, B and C).ð12 ; 0;
1
2Þ ðh þ lÞ=2

ð12 ;
1
2 ; 0Þ ðh þ kÞ=2

Robv ð23 ;
1
3 ;

1
3Þ ð2h þ k þ lÞ=3 hkl: �h þ k þ l ¼ 3n

ð13 ;
2
3 ;

2
3Þ ðh þ 2k þ 2lÞ=3 (triple hexagonal cell in obverse orientation)

Rrev ð13 ;
2
3 ;

1
3Þ ðh þ 2k þ lÞ=3 hkl: h � k þ l ¼ 3n

ð23 ;
1
3 ;

2
3Þ ð2h þ k þ 2lÞ=3 (triple hexagonal cell in reverse orientation)

Table 1.6.3.2
Effect of some glide reflections on conditions for possible reflections

Glide
reflection wT h

Conditions for possible
reflections

a ? ½001� (1/2, 0, z) (hk0) hk0: h ¼ 2n
b ? ½001� (0, 1/2, z) (hk0) hk0: k ¼ 2n
n ? ½001� (1/2, 1/2, z) (hk0) hk0: h þ k ¼ 2n
d ? ½001� (1/4, �1/4, z) (hk0) hk0: h þ k ¼ 4n ðh; k ¼ 2nÞ

Table 1.6.3.3
Effect of some screw rotations on conditions for possible reflections

Screw
rotation wT h

Conditions for
possible reflections

21 k ½100� (1/2, y, z) (h00) h00: h ¼ 2n
21 k ½010� (x, 1/2, z) (0k0) 0k0: k ¼ 2n
21 k ½001� (x, y, 1/2) (00l) 00l: l ¼ 2n
21 k ½110� (1/2, 1/2, z) (hh0) None
31 k ½001� (x, y, 1/3) (00l) 00l: l ¼ 3n
31 k ½111� (1/3, 1/3, 1/3) (hhh) None
41 k ½001� (x, y, 1/4) (00l) 00l: l ¼ 4n
61 k ½001� (x, y, 1/6) (00l) 00l: l ¼ 6n
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These reflection conditions that are not related to space-group

operations are given in Chapter 2.3 only for special positions.

They may arise, however, also for different reasons. For example,

a heavy atom at the origin of the space group P212121 would

generate F-centring with corresponding apparent absences (cf.

the special position 4a of the space group Pbca and the absences

it generates).

We wish to point out that the most common ‘special-position

absence’ in molecular structures is due to a heavy atom at the

origin of the space group P21=c.

1.6.4. Tables of reflection conditions and possible space
groups

By H. D. Flack and U. Shmueli

1.6.4.1. Introduction

The primary order of presentation of these tables of reflection

conditions of space groups is the Bravais lattice. This order has

been chosen because cell reduction on unit-cell dimensions leads

to the Bravais lattice as described as stage 1 in Section 1.6.2.1.

Within the space groups of a given Bravais lattice, the entries are

arranged by Laue class, which may be obtained as described as

stage 2 in Section 1.6.2.1. As a consequence of these decisions

about the way the tables are structured, in the hexagonal family

one finds for the Bravais lattice hP that the Laue classes 3, 3m1,

31m, 6/m and 6/mmm are grouped together.

As an aid in the study of naturally occurring macromolecules

and compounds made by enantioselective synthesis, the space

groups of enantiomerically pure compounds (Sohncke space

groups) are typeset in bold.

The tables show, on the left, sets of reflection conditions and,

on the right, those space groups that are compatible with the

given set of reflection conditions. The reflection conditions, e.g. h

or k + l, are to be understood as h ¼ 2n or k þ l ¼ 2n, respec-

tively. All of the space groups in each table correspond to the

same Patterson symmetry, which is indicated in the table header.

This makes for easy comparison with the entries for the indivi-

dual space groups in Chapter 2.3 of this volume, in which the

Patterson symmetry is also very clearly shown. All space groups

with a conventional choice of unit cell are included in Tables

1.6.4.2–1.6.4.30. All alternative settings displayed in Chapter 2.3

are thus included. The following further alternative settings, not

displayed in Chapter 2.3, are also included: space group Pb3

(205) and all the space groups with an hR Bravais lattice in the

reverse setting with hexagonal axes.

Table 1.6.2.1 gives some relevant statistics drawn from Tables

1.6.4.2–1.6.4.30. The total number of space-group settings

mentioned in these tables is 416. This number is considerably

larger than the 230 space-group types described in Part 2 of this

volume. The following example shows why the tables include data

for several descriptions of the space-group types. At the stage of

space-group determination for a crystal in the crystal class mm2,

it is not yet known whether the twofold rotation axis lies along a,

b or c. Consequently, space groups based on the three point

groups 2mm, m2m and mm2 need to be considered.

In some texts dealing with space-group determination, a

‘diffraction symbol’ (sometimes also called an ‘extinction

symbol’) in the form of a Hermann–Mauguin space-group symbol

is used as a shorthand code for the reflection conditions and Laue

class. These symbols were introduced by Buerger (1935, 1942,

1969) and a concise description is to be found in Looijenga-Vos &

Buerger (2002). Nespolo et al. (2014) use them.

1.6.4.2. Examples of the use of the tables

(1) If the Bravais lattice is oI and the Laue class is mmm, Table

1.6.4.1 directs us to Table 1.6.4.11. Given the observed

reflection conditions

hkl: h þ k þ l ¼ 2n; 0kl: k ¼ 2n; l ¼ 2n; h0l: h þ l ¼ 2n;

hk0: h þ k ¼ 2n; h00: h ¼ 2n; 0k0: k ¼ 2n; 00l: l ¼ 2n;

it is seen from Table 1.6.4.11 that the possible settings of the

space groups are: Ibm2 (46), Ic2m (46), Ibmm (74) and Icmm

(74).

(2) If the Bravais lattice is oP and the Laue class is mmm, Table

1.6.4.1 directs us to Table 1.6.4.7. If there are no conditions on

0kl, the space groups P222 to Pmnn should be searched. If the

condition is 0kl: k ¼ 2n or l ¼ 2n, the space groups Pbm2 to

Pcnn should be searched. If the condition is 0kl: k þ l ¼ 2n,

the space groups Pnm21 to Pnnn should be searched.

(3) If the Bravais lattice is cP and the Laue class is m3, Table

1.6.4.1 directs us to Table 1.6.4.25. If the conditions are

0kl: k ¼ 2n and h00: h ¼ 2n, it is readily seen that the space

group is Pa3.

(4) If only the Bravais lattice is known or assumed, which is the

case in powder-diffraction work (see Section 1.6.5.3), all

tables of this section corresponding to this Bravais lattice

need to be consulted. For example, if it is known that the

Bravais lattice is of type cP, Table 1.6.4.1 tells us that the

possible Laue classes are m3 and m3m, and the possible space

groups can be found in Tables 1.6.4.25 and 1.6.4.26, respec-

tively. The appropriate reflection conditions are of course

given in these tables. All relevant tables can thus be located

with the aid of Table 1.6.4.1 if the Bravais lattice is known.

1.6.5. Specialized methods of space-group determination

By H. D. Flack

1.6.5.1. Applications of resonant scattering to symmetry deter-
mination

1.6.5.1.1. Introduction

In small-molecule crystallography, it has been customary in

crystal-structure analysis to make no use of the contribution of

resonant scattering (otherwise called anomalous scattering and in

older literature anomalous dispersion) other than in the specific

area of absolute-structure and absolute-configuration determi-

nation. One may trace the causes of this situation to the weakness

of the resonant-scattering contribution, to the high cost in time

and labour of collecting intensity data sets containing measure-

ments of all Friedel opposites and for a lack of any perceived or

real need for the additional information that might be obtained

from the effects of resonant scattering.

On the experimental side, the turning point came with the

widespread distribution of area detectors for small-molecule

crystallography, giving the potential to measure, at no extra cost,

full-sphere data sets leading to the intensity differences between

Friedel opposites hkl and hkl. In 2015, the new methods of data

analysis briefly presented here are in the stage of development

(continued on page 125)
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Table 1.6.4.1
Summary of Tables 1.6.4.2–1.6.4.30

Table
No. Bravais lattice Laue class Patterson symmetry Comment

1.6.4.2 aP 1 P1

1.6.4.3 mP 2/m P12=m1 Unique b

1.6.4.4 mS (mC, mA, mI) 2/m C12=m1, A12=m1, I12=m1 Unique b

1.6.4.5 mP 2/m P112=m Unique c

1.6.4.6 mS (mA, mB, mI) 2/m A112=m, B112=m, I112=m Unique c

1.6.4.7 oP mmm Pmmm

1.6.4.8 oS (oC) mmm Cmmm

1.6.4.9 oS (oB) mmm Bmmm

1.6.4.10 oS (oA) mmm Ammm

1.6.4.11 oI mmm Immm

1.6.4.12 oF mmm Fmmm

1.6.4.13 tP 4=m P4=m

1.6.4.14 tP 4=mmm P4=mmm

1.6.4.15 tI 4=m I4=m

1.6.4.16 tI 4=mmm I4=mmm

1.6.4.17 hP 3 P3

1.6.4.18 hP 31m and 3m1 P31m and P3m1

1.6.4.19 hP 6=m P6=m

1.6.4.20 hP 6=mmm P6=mmm

1.6.4.21 hR 3 R3 Hexagonal axes

1.6.4.22 hR 3m R3m Hexagonal axes

1.6.4.23 hR 3 R3 Rhombohedral axes

1.6.4.24 hR 3m R3m Rhombohedral axes

1.6.4.25 cP m3 Pm3

1.6.4.26 cP m3m Pm3m

1.6.4.27 cI m3 Im3

1.6.4.28 cI m3m Im3m

1.6.4.29 cF m3 Fm3

1.6.4.30 cF m3m Fm3m

Table 1.6.4.2
Reflection conditions and possible space groups with Bravais lattice aP and Laue class 1; Patterson symmetry P1

Reflection conditions
Space
group No.

Space
group No.

P1 1 P1 2

Table 1.6.4.3
Reflection conditions and possible space groups with Bravais lattice mP and Laue class 2/m; (monoclinic, unique axis b); Patterson symmetry P12=m1

Reflection conditions
Space
group No.

Space
group No.

Space
group No.h0l 0kl hk0 0k0 h00 00l

P2 3 Pm 6 P2=m 10

k P21 4 P21=m 11

h h Pa 7 P2=a 13

h k h P21=a 14

l l Pc 7 P2=c 13

l k l P21=c 14

h + l h l Pn 7 P2=n 13

h + l k h l P21=n 14
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Table 1.6.4.4
Reflection conditions and possible space groups with Bravais lattice mS (mC, mA, mI) and Laue class 2/m (monoclinic, unique axis b); Patterson
symmetry C12=m1, A12=m1, I12=m1

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl h0l 0kl hk0 0k0 h00 00l

h + k h k h + k k h C2 5 Cm 8 C2=m 12

h + k h, l k h + k k h l Cc 9 C2=c 15

k + l l k + l k k l A2 5 Am 8 A2=m 12

k + l h, l k + l k k h l An 9 A2=n 15

h + k + l h + l k + l h + k k h l I2 5 Im 8 I2=m 12

h + k + l h, l k + l h + k k h l Ia 9 I2=a 15

Table 1.6.4.5
Reflection conditions and possible space groups with Bravais lattice mP and Laue class 2/m (monoclinic, unique axis c); Patterson symmetry P112=m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.h0l 0kl hk0 0k0 h00 00l

P2 3 Pm 6 P2=m 10

l P21 4 P21=m 11

h h Pa 7 P2=a 13

h h l P21=a 14

k k Pb 7 P2=b 13

k k l P21=b 14

h + k k h Pn 7 P2=n 13

h + k k h l P21=n 14

Table 1.6.4.6
Reflection conditions and possible space groups with Bravais lattice mS (mA, mB, mI) and Laue class 2/m (monoclinic, unique axis c); Patterson
symmetry A112=m, B112=m1, I112=m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl h0l 0kl hk0 0k0 h00 00l

k + l l k + l k k l A2 5 Am 8 A2=m 12

k + l l k + l h, k k h l Aa 9 A2=a 15

h + l h + l l h h l B2 5 Bm 8 B2=m 12

h + l h + l l h, k k h l Bn 9 B2=n 15

h + k + l h + l k + l h + k k h l I2 5 Im 8 I2=m 12

h + k + l h + l k + l h, k k h l Ib 9 I2=b 15
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Table 1.6.4.7
Reflection conditions and possible space groups with Bravais lattice oP and Laue class mmm; Patterson symmetry Pmmm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.0kl h0l hk0 h00 0k0 00l

P222 16 Pmm2 25 Pm2m 25
P2mm 25 Pmmm 47

l P2221 17

k P2212 17

k l P22121 18

h P2122 17

h l P21221 18

h k P21212 18

h k l P212121 19

h h P21ma 26 Pm2a 28 Pmma 51

k k Pm21b 26 P2mb 28 Pmmb 51

h + k h k Pm21n 31 P21mn 31 Pmmn 59

h h P21am 26 Pma2 28 Pmam 51

h h h P2aa 27 Pmaa 49

h k h k P21ab 29 Pmab 57

h h + k h k P2an 30 Pman 53

l l Pmc21 26 P2cm 28 Pmcm 51

l h h l P21ca 29 Pmca 57

l k k l P2cb 32 Pmcb 55

l h + k h k l P21cn 33 Pmcn 62

h + l h l Pmn21 31 P21nm 31 Pmnm 59

h + l h h l P2na 30 Pmna 53

h + l k h k l P21nb 33 Pmnb 62

h + l h + k h k l P2nn 34 Pmnn 58

k k Pb21m 26 Pbm2 28 Pbmm 51

k h h k Pb21a 29 Pbma 57

k k k Pb2b 27 Pbmb 49

k h + k h k Pb2n 30 Pbmn 53

k h h k Pba2 32 Pbam 55

k h h h k Pbaa 54

k h k h k Pbab 54

k h h + k h k Pban 50

k l k l Pbc21 29 Pbcm 57

k l h h k l Pbca 61

k l k k l Pbcb 54

k l h + k h k l Pbcn 60
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Reflection conditions
Space
group No.

Space
group No.

Space
group No.0kl h0l hk0 h00 0k0 00l

k h + l h k l Pbn21 33 Pbnm 62

k h + l h h k l Pbna 60

k h + l k h k l Pbnb 56

k h + l h + k h k l Pbnn 52

l l Pcm21 26 Pc2m 28 Pcmm 51

l h h l Pc2a 32 Pcma 55

l k k l Pc21b 29 Pcmb 57

l h + k h k l Pc21n 33 Pcmn 62

l h h l Pca21 29 Pcam 57

l h h h l Pcaa 54

l h k h k l Pcab 61

l h h + k h k l Pcan 60

l l l Pcc2 27 Pccm 49

l l h h l Pcca 54

l l k k l Pccb 54

l l h + k h k l Pccn 56

l h + l h l Pcn2 30 Pcnm 53

l h + l h h l Pcna 50

l h + l k h k l Pcnb 60

l h + l h + k h k l Pcnn 52

k + l k l Pnm21 31 Pn21m 31 Pnmm 59

k + l h h k l Pn21a 33 Pnma 62

k + l k k l Pn2b 30 Pnmb 53

k + l h + k h k l Pn2n 34 Pnmn 58

k + l h h k l Pna21 33 Pnam 62

k + l h h h k l Pnaa 56

k + l h k h k l Pnab 60

k + l h h + k h k l Pnan 52

k + l l k l Pnc2 30 Pncm 53

k + l l h h k l Pnca 60

k + l l k k l Pncb 50

k + l l h + k h k l Pncn 52

k + l h + l h k l Pnn2 34 Pnnm 58

k + l h + l h h k l Pnna 52

k + l h + l k h k l Pnnb 52

k + l h + l h + k h k l Pnnn 48

Table 1.6.4.7 (continued)
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Table 1.6.4.8
Reflection conditions and possible space groups with Bravais lattice oS (oC setting) and Laue class mmm; Patterson symmetry Cmmm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl 0kl h0l hk0 h00 0k0 00l

h + k k h h + k h k C222 21 Cmm2 35 Cm2m 38
C2mm 38 Cmmm 65

h + k k h h + k h k l C2221 20

h + k k h h, k h k Cm2e 39 C2me 39 Cmme 67

h + k k h, l h + k h k l Cmc21 36 C2cm 40 Cmcm 63

h + k k h, l h, k h k l C2ce 41 Cmce 64

h + k k, l h h + k h k l Ccm21 36 Cc2m 40 Ccmm 63

h + k k, l h h, k h k l Cc2e 41 Ccme 64

h + k k, l h, l h + k h k l Ccc2 37 Cccm 66

h + k k, l h, l h, k h k l Ccce 68

Table 1.6.4.9
Reflection conditions and possible space groups with Bravais lattice oS (oB setting) and Laue class mmm; Patterson symmetry Bmmm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl 0kl h0l hk0 h00 0k0 00l

h + l l h + l h h l B222 21 Bm2m 35 Bmm2 38
B2mm 38 Bmmm 65

h + l l h + l h h k l B2212 20

h + l l h + l h, k h k l Bm21b 36 B2mb 40 Bmmb 63

h + l l h, l h h l Bme2 39 B2em 39 Bmem 67

h + l l h, l h, k h k l B2eb 41 Bmeb 64

h + l k, l h + l h h k l Bb21m 36 Bbm2 40 Bbmm 63

h + l k, l h + l h, k h k l Bb2b 37 Bbmb 66

h + l k, l h, l h h k l Bbe2 41 Bbem 64

h + l k, l h, l h, k h k l Bbeb 68

Table 1.6.4.10
Reflection conditions and possible space groups with Bravais lattice oS (oA setting) and Laue class mmm; Patterson symmetry Ammm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl 0kl h0l hk0 h00 0k0 00l

k + l k + l l k k l A222 21 A2mm 35 Am2m 38
Amm2 38 Ammm 65

k + l k + l l k h k l A2122 20

k + l k + l l h, k h k l A21ma 36 Am2a 40 Amma 63

k + l k + l h, l k h k l A21am 36 Ama2 40 Amam 63

k + l k + l h, l h, k h k l A2aa 37 Amaa 66

k + l k, l l k k l Aem2 39 Ae2m 39 Aemm 67

k + l k, l l h, k h k l Ae2a 41 Aema 64

k + l k, l h, l k h k l Aea2 41 Aeam 64

k + l k, l h, l h, k h k l Aeaa 68
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Table 1.6.4.11
Reflection conditions and possible space groups with Bravais lattice oI and Laue class mmm; Patterson symmetry Immm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl 0kl h0l hk0 h00 0k0 00l

h + k + l k + l h + l h + k h k l I222 23 I212121 24 Imm2 44
Im2m 44 I2mm 44 Immm 71

h + k + l k + l h + l h, k h k l Im2a 46 I2mb 46 Imma 74
Immb 74

h + k + l k + l h, l h + k h k l Ima2 46 I2cm 46 Imam 74
Imcm 74

h + k + l k + l h, l h, k h k l I2cb 45 Imcb 72

h + k + l k, l h + l h + k h k l Ibm2 46 Ic2m 46 Ibmm 74
Icmm 74

h + k + l k, l h + l h, k h k l Ic2a 45 Icma 72

h + k + l k, l h, l h + k h k l Iba2 45 Ibam 72

h + k + l k, l h, l h, k h k l Ibca 73 Icab 73

Table 1.6.4.12
Reflection conditions and possible space groups with Bravais lattice oF and Laue class mmm; Patterson symmetry Fmmm

Reflection conditions
Space
group No.hkl 0kl h0l hk0 h00 0k0 00l

h + k, h + l, k + l k, l h, l h, k h k l F222 22
Fmm2 42
Fm2m 42
F2mm 42
Fmmm 69

h + k, h + l, k + l k, l h þ l ¼ 4n; h; l h þ k ¼ 4n; h; k h ¼ 4n k ¼ 4n l ¼ 4n F2dd 43

h + k, h + l, k + l k þ l ¼ 4n; k; l h, l h þ k ¼ 4n; h; k h ¼ 4n k ¼ 4n l ¼ 4n Fd2d 43

h + k, h + l, k + l k þ l ¼ 4n; k; l h þ l ¼ 4n; h; l h, k h ¼ 4n k ¼ 4n l ¼ 4n Fdd2 43

h + k, h + l, k + l k þ l ¼ 4n; k; l h þ l ¼ 4n; h; l h þ k ¼ 4n; h; k h ¼ 4n k ¼ 4n l ¼ 4n Fddd 70

Table 1.6.4.13
Reflection conditions and possible space groups with Bravais lattice tP and Laue class 4/m; hk are permutable; Patterson symmetry P4/m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hk0 0kl h�h l 00l h00

P4 75 P4 81 P4=m 83

l P42 77 P42=m 84

l ¼ 4n P41 76 P43 78

h + k h P4=n 85

h + k l h P42=n 86
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Table 1.6.4.14
Reflection conditions and possible space groups with Bravais lattice tP and Laue class 4/mmm; hk are permutable; Patterson symmetry P4/mmm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hk0 0kl h�h l 00l h00

P422 89 P4mm 99 P42m 111
P4m2 115 P4=mmm 123

h P4212 90 P421m 113

l P4222 93

l h P42212 94

l ¼ 4n P4122 91 P4322 95

l ¼ 4n h P41212 92 P43212 96

l l P42mc 105 P42c 112 P42=mmc 131

l l h P421c 114

k h P4bm 100 P4b2 117 P4=mbm 127

k l l h P42bc 106 P42=mbc 135

l l P42cm 101 P4c2 116 P42=mcm 132

l l l P4cc 103 P4=mcc 124

k + l l h P42nm 102 P4n2 118 P42=mnm 136

k + l l l h P4nc 104 P4=mnc 128

h + k h P4=nmm 129

h + k l l h P42=nmc 137

h + k k h P4=nbm 125

h + k k l l h P42=nbc 133

h + k l l h P42=ncm 138

h + k l l l h P4=ncc 130

h + k k + l l h P42=nnm 134

h + k k + l l l h P4=nnc 126

Table 1.6.4.15
Reflection conditions and possible space groups with Bravais lattice tI and Laue class 4/m; hk are permutable; Patterson symmetry I4/m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl hk0 0kl h�h l 00l h00 h�h 0

h + k + l h + k k + l l l h I4 79 I4 82 I4=m 87

h + k + l h + k k + l l l ¼ 4n h I41 80

h + k + l h, k k + l l l ¼ 4n h h I41=a 88
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Table 1.6.4.17
Reflection conditions and possible space groups with Bravais lattice hP and Laue class 3; hki are permutable; Patterson symmetry P3

Reflection conditions
Space
group No.

Space
group No.hh2hl hh0l 000l

P3 143 P3 147

l ¼ 3n P31 144 P32 145

Table 1.6.4.18
Reflection conditions and possible space groups with Bravais lattice hP and Laue classes 31m and 3m1; hki are permutable; Patterson symmetry P31m
and P3m1

Reflection conditions Class 31m Class 3m1

hh2hl hh0l 000l
Space
group No.

Space
group No.

P312 149 P321 150
P31m 157 P3m1 156
P31m 162 P3m1 164

l ¼ 3n P3112 151 P3121 152
P3212 153 P3221 154

l l P31c 159
P31c 163

l l P3c1 158
P3c1 165

Table 1.6.4.19
Reflection conditions and possible space groups with Bravais lattice hP and Laue class 6/m; hki are permutable; Patterson symmetry P6/m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hh2hl hh0l 000l

P6 168 P6 174 P6=m 175

l P63 173 P63=m 176

l ¼ 3n P62 171 P64 172

l ¼ 6n P61 169 P65 170

Table 1.6.4.16
Reflection conditions and possible space groups with Bravais lattice tI and Laue class 4/mmm; hk are permutable; Patterson symmetry I4/mmm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl hk0 0kl h�h l 00l h00 h�h 0

h + k + l h + k k + l l l h I422 97 I4mm 107 I4m2 119
I42m 121 I4=mmm 139

h + k + l h + k k + l l l ¼ 4n h I4122 98

h + k + l h + k k + l 2h þ l ¼ 4n l ¼ 4n h h I41md 109 I42d 122

h + k + l h + k k, l l l h I4cm 108 I4c2 120 I4=mcm 140

h + k + l h + k k, l 2h þ l ¼ 4n l ¼ 4n h h I41cd 110

h + k + l h, k k + l 2h þ l ¼ 4n l ¼ 4n h h I41=amd 141

h + k + l h, k k, l 2h þ l ¼ 4n l ¼ 4n h h I41=acd 142
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Table 1.6.4.20
Reflection conditions and possible space groups with Bravais lattice hP and Laue class 6/mmm; hki are permutable; Patterson symmetry P6/mmm

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hh2hl hh0l 000l

P622 177 P6mm 183 P6m2 187
P62m 189 P6=mmm 191

l P6322 182

l ¼ 3n P6222 180 P6422 181

l ¼ 6n P6122 178 P6522 179

l l P63mc 186 P62c 190 P63=mmc 194

l l P63cm 185 P6c2 188 P63=mcm 193

l l l P6cc 184 P6=mcc 192

Table 1.6.4.21
Reflection conditions and possible space groups with Bravais lattice hR and Laue class 3 (hexagonal axes); hki are permutable; Patterson symmetry R3;
Ov = obverse setting; Rv = reverse setting

Reflection conditions
Space
group No.

Space
group No.hkil hki0 hh2hl hh0l 000l hh00

�h þ k þ l ¼ 3n �h þ k ¼ 3n l ¼ 3n h þ l ¼ 3n l ¼ 3n h ¼ 3n R3 146 R3 148 Ov

h � k þ l ¼ 3n h � k ¼ 3n l ¼ 3n �h þ l ¼ 3n l ¼ 3n h ¼ 3n R3 146 R3 148 Rv

Table 1.6.4.22
Reflection conditions and possible space groups with Bravais lattice hR and Laue class 3m (hexagonal axes); hki are permutable; Patterson symmetry
R3m; Ov = obverse setting; Rv = reverse setting

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkil hki0 hh2hl hh0l 000l hh00

�h þ k þ l ¼ 3n �h þ k ¼ 3n l ¼ 3n h þ l ¼ 3n l ¼ 3n h ¼ 3n R32 155 R3m 160 R3m 166 Ov

�h þ k þ l ¼ 3n �h þ k ¼ 3n l ¼ 3n h þ l ¼ 3n, l ¼ 2m l ¼ 6n h ¼ 3n R3c 161 R3c 167 Ov

h � k þ l ¼ 3n h � k ¼ 3n l ¼ 3n �h þ l ¼ 3n l ¼ 3n h ¼ 3n R32 155 R3m 160 R3m 166 Rv

h � k þ l ¼ 3n h � k ¼ 3n l ¼ 3n �h þ l ¼ 3n; l ¼ 2m l ¼ 6n h ¼ 3n R3c 161 R3c 167 Rv

Table 1.6.4.23
Reflection conditions and possible space groups with Bravais lattice hR and Laue class 3 (rhombohedral axes); hkl are permutable; Patterson
symmetry R3

Reflection conditions
Space
group No.

Space
group No.hhl hhh

R3 146 R3 148

Table 1.6.4.24
Reflection conditions and possible space groups with Bravais lattice hR and Laue class 3m (rhombohedral axes); hkl are permutable; Patterson
symmetry R3m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hhl hhh

R32 155 R3m 160 R3m 166

l h R3c 161 R3c 167
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Table 1.6.4.25
Reflection conditions and possible space groups with Bravais lattice cP and Laue class m3; hkl are cyclically permutable; Patterson symmetry Pm3

Reflection conditions
Space
group No.

Space
group No.0kl h�h l h00

P23 195 Pm3 200

h P213 198

k h Pa3 205

l h Pb3 205

k + l h Pn3 201

Table 1.6.4.26
Reflection conditions and possible space groups with Bravais lattice cP and Laue class m3m; hkl are permutable; Patterson symmetry Pm3m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.0kl h�h l h00

P432 207 P43m 215 Pm3m 221

h P4232 208

h ¼ 4n P4332 212 P4132 213

l h P43n 218 Pm3n 223

k + l h Pn3m 224

k + l l h Pn3n 222

Table 1.6.4.27
Reflection conditions and possible space groups with Bravais lattice cI and Laue class m3; hkl are cyclically permutable; Patterson symmetry Im3

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl 0kl h�h l h00

h + k + l k + l l h I23 197 I213 199 Im3 204

h + k + l k, l l h Ia3 206

Table 1.6.4.28
Reflection conditions and possible space groups with Bravais lattice cI and Laue class m3m; hkl are permutable; Patterson symmetry Im3m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl 0kl h�h l h00

h + k + l k + l l h I432 211 I43m 217 Im3m 229

h + k + l k + l l h ¼ 4n I4132 214

h + k + l k + l 2h þ l ¼ 4n h ¼ 4n I43d 220

h + k + l k, l 2h þ l ¼ 4n h ¼ 4n Ia3d 230

Table 1.6.4.29
Reflection conditions and possible space groups with Bravais lattice cF and Laue class m3; hkl are cyclically permutable; Patterson symmetry Fm3

Reflection conditions
Space
group No.

Space
group No.hkl 0kl h�h l h00

h þ k; h þ l; k þ l k, l h + l h F23 196 Fm3 202

h þ k; h þ l; k þ l k þ l ¼ 4n; k; l h + l h ¼ 4n Fd3 203
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and have not yet enjoyed widespread distribution, use and

acceptance by the community. Flack et al. (2011) and Parsons et

al. (2012) give detailed information on these calculations.

1.6.5.1.2. Status of centrosymmetry and resonant scattering

The basic starting point in this analysis is the following linear

transformation of jFðhklÞj2 and jFðhklÞj2, applicable to both

observed and model values, to give the average (A) and differ-

ence (D) intensities:

AðhklÞ ¼ 1
2 ½jFðhklÞj2 þ jFðhklÞj2�;

DðhklÞ ¼ jFðhklÞj2 � jFðhklÞj2:

In equation (1.6.2.1), AðhklÞ was denoted by jFavðhklÞj2. The

expression for DðhklÞ corresponding to that for AðhklÞ given in

equation (1.6.2.1) and using the same nomenclature is

DðhÞ ¼
P

i;j

½ðfi þ f 0i Þf
00
j � ðfj þ f 0j Þf

00
i � sin½2�hðri � rjÞ�:

In general jDðhklÞj is small compared to AðhklÞ. A compound

with an appreciable resonant-scattering contribution has jDðhklÞj

� 0:01AðhklÞ, whereas a compound with a small resonant-

scattering contribution has jDðhklÞj � 0:0001AðhklÞ. For centric

reflections, Dmodel ¼ 0, and so the values of DobsðhklÞ of these are

entirely due to random uncertainties and systematic errors in the

intensity measurements. DobsðhklÞ of acentric reflections contains

contributions both from the random uncertainties and the

systematic errors of the data measurements, and from the

differences between jFðhklÞj2 and jFðhklÞj2 which arise through

the effect of resonant scattering. A slight experimental limitation

is that a data set of intensities needs to contain both reflections

hkl and hkl in order to obtain AobsðhklÞ and DobsðhklÞ.

The Bijvoet ratio, defined by

� ¼
hD2i

1=2

hAi
;

is the ratio of the root-mean-square value of D to the mean value

of A. In a structure analysis, two independent estimates of the

Bijvoet ratio are available and their comparison leads to useful

information as to whether the crystal structure is centrosym-

metric or not.

The first estimate arises from considerations of intensity

statistics leading to the definition of the Bijvoet ratio as a value

called Friedifstat, whose functional form was derived by Flack &

Shmueli (2007) and Shmueli & Flack (2009). One needs only to

know the chemical composition of the compound and the

wavelength of the X-radiation to calculate Friedifstat using

various available software.

The second estimate of the Bijvoet ratio, Friedifobs, is obtained

from the observed diffraction intensities. One problematic point

in the evaluation of Friedifobs arises because A and D do not have

the same dependence on sin �=� and it is necessary to eliminate

this difference as far as possible. A second problematic point in

the calculation is to make sure that only acentric reflections of

any of the noncentrosymmetric point groups in the chosen Laue

class are selected for the calculation of Friedifobs. In this way one

is sure that if the point group of the crystal is centrosymmetric, all

of the chosen reflections are centric, and if the point group of the

crystal is noncentrosymmetric, all of the chosen reflections are

acentric. The necessary selection is achieved by taking only those

reflections that are general in the Laue group. To date (2015), the

calculation of Friedifobs is not available in distributed software.

On comparison of Friedifstat with Friedifobs, one is able to state

with some confidence that:

(1) if Friedifobs is much lower than Friedifstat, then the crystal

structure is either centrosymmetric, and random uncertain-

ties and systematic errors in the data set are minor, or

noncentrosymmetric with the crystal twinned by inversion in

a proportion close to 50:50;

(2) if Friedifobs is close in value to Friedifstat, then the crystal is

probably noncentrosymmetric and random uncertainties and

systematic errors in the data set are minor. However, data

from a centrosymmetric crystal with large random uncer-

tainties and systematic errors may also produce this result;

and

(3) if Friedifobs is much larger than Friedifstat then either the data

set is dominated by random uncertainties and systematic

errors or the chemical formula is erroneous.

Example 1

The crystal of compound Ex1 (Udupa & Krebs, 1979) is known

to be centrosymmetric (space group P21=c) and has a signifi-

cant resonant-scattering contribution, Friedifstat = 498 and

Friedifobs = 164. The comparison of Friedifstat and Friedifobs
indicates that the crystal structure is centrosymmetric.

Example 2

The crystal of compound Ex2, potassium hydrogen (2R,3R)

tartrate, is known to be enantiomerically pure and appears in

space group P212121. The value of Friedifobs is 217 compared to

a Friedifstat value of 174. The agreement is good and allows the

deduction that the crystal is neither centrosymmetric, nor

twinned by inversion in a proportion near to 50:50, nor that the

Table 1.6.4.30
Reflection conditions and possible space groups with Bravais lattice cF and Laue class m3m; hkl are permutable; Patterson symmetry Fm3m

Reflection conditions
Space
group No.

Space
group No.

Space
group No.hkl 0kl h � hl h00

h þ k; h þ l; k þ l k, l h + l h F432 209 F43m 216 Fm3m 225

h þ k; h þ l; k þ l k, l h + l h ¼ 4n F4132 210

h þ k; h þ l; k þ l k, l h, l h F43c 219 Fm3c 226

h þ k; h þ l; k þ l k þ l ¼ 4n; k; l h + l h ¼ 4n Fd3m 227

h þ k; h þ l; k þ l k þ l ¼ 4n; k; l h, l h ¼ 4n Fd3c 228
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data set is unsatisfactorily dominated by random uncertainty

and systematic error.

Example 3

The crystals of compound Ex3 (Zhu & Jiang, 2007) occur in

Laue group 1. One finds Friedifstat = 70 and Friedifobs = 499.

The huge discrepency between the two shows that the

observed values of D are dominated by random uncertainty

and systematic error.

1.6.5.1.3. Resolution of noncentrosymmetric ambiguities

It was shown in Section 1.6.5.1.2 that under certain circum-

stances it is possible to determine whether or not the space group

of the crystal investigated is centrosymmetric. Suppose that the

space group was found to be noncentrosymmetric. In each Laue

class, there is one centrosymmetric point group and one or more

noncentrosymmetric point groups. For example, in the Laue class

mmm we need to distinguish between the point groups 222, 2mm,

m2m and mm2, and of course between the space groups based on

them. We shall show that it is possible in practice to distinguish

between these noncentrosymmetric point groups using intensity

differences between Friedel opposites caused by resonant scat-

tering.

An excellent intensity data set from a crystal (Ex2 above) of

potassium hydrogen (2R, 3R) tartrate, measured with a wave-

length of 0.7469 Å at 100 K, was used. The Laue group was

assumed to be mmm. The raw data set was initially merged and

averaged in point group 1 and all special reflections of the Laue

group mmm (i.e. 0kl, h0l, hk0, h00, 0k0, 00l) were set aside. The

remaining data were organized into sets of reflections symmetry-

equivalent under the Laue group mmm, and only those sets (589

in all) containing all 8 of the mmm-symmetry-equivalent reflec-

tions were retained. Each of these sets provides 4 Aobs and 4 Dobs

values which can be used to calculate Rmerge values appropriate to

the five point groups in the Laue class mmm. The results are

given in Table 1.6.5.1. The value of 100% for Rmerge in a

centrosymmetric point group, such as mmm or 2/m, arises by

definition and not by coincidence. The RD of the true point group

has the lowest value, which is noticeably different from the other

choices of point group.

The crystal of Ex1 above (space group P21=c) was treated in a

similar manner. Table 1.6.5.2 shows that RD values display no

preference between the three point groups in Laue class 2/m.

Intensity measurements comprising a full sphere of reflections

are essential to the success of the Rmerge tests described in this

section.

1.6.5.1.4. Data evaluation after structure refinement

There is an excellent way in which to evaluate both data

measurement and treatment procedures, and the fit of the model

to the data, including the space-group assignment, at the

completion of structure refinement. This technique is applicable

both to noncentrosymmetric and to centrosymmetric crystals. A

scattergram of Dobs against Dmodel, and 2Aobs against 2Amodel

pairs are plotted on the same graph. All (Dobs, Dmodel) pairs are

plotted together with those (2Aobs, 2Amodel) pairs which have

2Aobs < jDobsjmax. The range of values on the axes of the model

and of the observed values should be identical. For acentric

reflections, for both A and D, a good fit of the observed to the

model quantities shows itself as a straight line of slope 1 passing

through the origin, with some scatter about this ideal straight line.

For an individual reflection, 2A and D are, respectively, the sum

and the difference of the same quantities and they have identical

standard uncertainties. It is thus natural to select 2A and D to

plot on the same graph. In practice one sees that the spread of the

2A plot increases with increasing value of 2A. Fig. 1.6.5.1 shows

the 2AD plot for Ex2 of Example 2 in Section 1.6.5.1.2, which is

most satisfactory and confirms the choice of point group from the

use of Rmerge. The conventional R value for all reflections is 3.1%

and for those shown in Fig. 1.6.5.1 it is 10.4%. The R value for all

D values is good at 51.1%. Fig. 1.6.5.2 shows the 2AD plot for

Ex1 of Example 1 in Section 1.6.5.1.2. The structure model is

centrosymmetric so all Dmodel values are zero. The conventional R

value on A for all reflections is 4.3% and for those shown in Fig.

1.6.5.2 it is 9.1%. The R value on all the D values is 100%.

1.6.5.2. Space-group determination in macromolecular crystal-
lography

For macromolecular crystallography, succinct descriptions of

space-group determination have been given by Kabsch (2010a,b,

2012) and Evans (2006, 2011). Two characteristics of macro-

molecular crystals give rise to variations on the small-molecule

procedures described above.

The first characteristic is the large size of the unit cell of

macromolecular crystals and the variation of the cell dimensions

from one crystal to another. This makes the determination of the

Bravais lattice by cell reduction problematic, as small changes of

cell dimensions give rise to differences in the assignment. Kabsch

(2010a,b, 2012) uses a ‘quality index’ from each of Niggli’s 44

lattice characters to come to a best choice. Grosse-Kunstleve et al.

(2004) and Sauter et al. (2004) have found that some commonly

used methods to determine the Bravais lattice are susceptible to

numerical instability, making it possible for high-symmetry

Bravais lattice types to be improperly identified. Sauter et al.

(2004, 2006) find from practical experience that a deviation � as
high as 1.4� from perfect alignment of direct and reciprocal lattice

rows must be allowed to construct the highest-symmetry Bravais

type consistent with the data. Evans (2006) uses a value of 3.0�.

The large unit-cell size also gives rise to a large number of

reflections in the asymmetric region of reciprocal space, and

taken with the tendency of macromolecular crystals to decom-

pose in the X-ray beam, full-sphere data sets are uncommon. This

means that confirmation of the Laue class by means of values of

Rint (Rmerge) are rarer than with small-molecule crystallography,

although Kabsch (2010b) does use a ‘redundancy-independent R

factor’. Evans (2006, 2011) describes methods very similar to

those given as the second stage in Section 1.6.2.1. The conclusion

of Sauter et al. (2006) and Evans (2006) is that Rint values as high

Table 1.6.5.1
Rmerge values for Ex2 for the 589 sets of general reflections of mmm
which have all eight measurements in the set

Rmerge (%) mmm 2mm m2m mm2 222

RA 1.30 1.30 1.30 1.30 1.30
RD 100.0 254.4 235.7 258.1 82.9

Table 1.6.5.2
Rmerge values for Ex1 for the 724 sets of general reflections of 2/m which
have all four measurements in the set

Rmerge (%) 2/m m 2

RA 1.29 1.29 1.29
RD 100.0 98.3 101.7
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as 25% must be permitted in order to assemble an optimal set of

operations to describe the diffraction symmetry. Another inter-

esting procedure, accompanied by experimental proof, has been

devised by Sauter et al. (2006). They show that it is clearer to

calculate Rmerge values individually for each potential symmetry

operation of a target point group rather than comparing Rmerge

values for target point groups globally. According to Sauter et al.

(2006) the reason for this improvement lies in the lack of intensity

data relating some target symmetry operations.

The second characteristic of macromolecular crystals is that

the compound is known, or presumed, to be chiral and enantio-

merically pure, so that the crystal structure is chiral. This limits

the choice of space group to the 65 Sohncke space groups

containing only translations, pure rotations or screw rotations.

For ease of use, these have been typeset in bold in Tables 1.6.4.2–

1.6.4.30.

For the evaluation of protein structures, Poon et al. (2010)

apply similar techniques to those described in Section 1.6.2.3. The

major tactical objective is to identify pairs of �-helices that have
been declared to be symmetry-independent in the structure

solution but which may well be related by a rotational symmetry

of the crystal structure. Poon et al. (2010) have been careful to

test their methodology against generated structural data before

proceeding to tests on real data. Their results indicate that some

2% of X-ray structures in the Protein Data Bank potentially fit in

a higher-symmetry space group. Zwart et al. (2008) have studied

the problems of under-assigned translational symmetry opera-

tions, suspected incorrect symmetry and twinned data with

ambiguous space-group choices, and give illustrations of the uses

of group–subgroup relations.

1.6.5.3. Space-group determination from powder diffraction

In powder diffraction, the reciprocal lattice is projected onto a

single dimension. This projection gives rise to the major difficulty

in interpreting powder-diffraction patterns. Reflections overlap

each other either exactly, owing to the symmetry of the lattice

metric, or approximately. This makes the extraction of the inte-

grated intensities of individual Bragg reflections liable to error.

Experimentally, the use of synchrotron radiation with its

exceedingly fine and highly monochromatic beam has enabled

considerable progress to be made over recent years. Other

obstacles to the interpretation of powder-diffraction patterns,

which occur at all stages of the analysis, are background inter-

pretation, preferred orientation, pseudo-translational symmetry

and impurity phases. These are general powder-diffraction

problems and will not be treated at all in the current chapter. The

reader should consult David et al. (2002) and David & Shankland

(2008) or the forthcoming new volume of International Tables for

Crystallography (Volume H, Powder Diffraction) for further

information.

It goes without saying that the main use of the powder method

is in structural studies of compounds for which single crystals

cannot be grown.

Let us start by running through the three stages of extraction

of symmetry information from the diffraction pattern described

in Section 1.6.2.1 to see how they apply to powder diffraction.

(1) Stage 1 concerns the determination of the Bravais lattice

from the experimentally determined cell dimensions. As such,

this process is identical to that described in Section 1.6.2.1.

The obstacle, arising from peak overlap, is the initial indexing

of the powder pattern and the determination of a unit cell,

see David et al. (2002) and David & Shankland (2008).

(2) Stage 2 concerns the determination of the point-group

symmetry of the intensities of the Bragg reflections. As a

preparation to stages 2 and 3, the integrated Bragg intensities

have to be extracted from the powder-diffraction pattern by

one of the commonly used profile analysis techniques [see

David et al. (2002) and David & Shankland (2008)]. The

intensities of severely overlapped reflections are subject to

error. Moreover, the exact overlap of reflections owing to the

symmetry of the lattice metric makes it impossible to distin-

guish between high- and low-symmetry Laue groups in the

same family e.g. between 4/m and 4/mmm in the tetragonal

family and m3 and m3m in the cubic family. Likewise,

Figure 1.6.5.1
Data-evaluation plot for crystal Ex2. The plot shows a scattergram of all
(Dobs;Dmodel) pairs and those (2Aobs; 2Amodel) pairs in the same intensity
range as the D values.

Figure 1.6.5.2
Data-evaluation plot for crystal Ex1. The plot shows a scattergram of all
(Dobs;Dmodel) and some (2Aobs; 2Amodel) data points.
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differences in intensity between Friedel opposites, hkl and

hkl, are hidden in a powder-diffraction pattern and the

techniques of Section 1.6.5.1 are inapplicable. It is also known

that experimental results on structure-factor statistics

described in Section 1.6.2.2 are sensitive to the algorithm

used to extract the integrated Bragg intensities from the

powder-diffraction pattern. One procedure tends to produce

intensity statistics typical of the noncentrosymmetric space

group P1 and another those of the centrosymmetric space

group P1. In all, nothing much can be learnt from stage 2 for a

powder-diffraction pattern. As a consequence, space-group

determination from powder diffraction relies entirely on the

Bravais lattice derived from the indexing of the diffraction

pattern in stage 1 and the detection of systematic absences in

stage 3.

(3) Stage 3 concerns the identification of the conditions for

possible systematic absences. However, Bragg-peak overlap

causes difficulties with determining systematic absences. For

powder-diffraction peaks at small values of sin �=�, the

problem is rarely severe, even for low-resolution laboratory

powder-diffraction data. Potentially absent reflections at

higher values of sin �=� often overlap with other reflections

of observable intensity. Accordingly, conclusions about the

presence of space-group symmetry operations are generally

drawn on the basis of a very small number of clear intensity

observations. Observing lattice-centring absences is usually

relatively easy. In the case of molecular organic materials,

considerable help in space-group selection comes from the

well known frequency distribution of space groups, where

some 80% of compounds crystallize in one of the following:

P21=c, P1, P212121, P21 and C2=c. Practical methods of

proceeding are described by David & Sivia (2002). It should

also be pointed out that Table 1.6.4.1 in this chapter may

often be found to be helpful. For example, if it is known

that the Bravais lattice is of type cP, Table 1.6.4.1 tells us that

the possible Laue classes are m3 and m3m and the possible

space groups can be found in Tables 1.6.4.25 and 1.6.4.26,

respectively. The appropriate reflection conditions are of

course given in these tables. All relevant tables can thus be

located with the aid of Table 1.6.4.1 if the Bravais lattice is

known.

There has been considerable progress since 2000 in the auto-

mated extraction by software of the set of conditions for reflec-

tions from a powder-diffraction pattern for undertaking stage 3

above. Once the conditions have been identified, Tables 1.6.4.2–

1.6.4.30 are used to identify the corresponding space groups. The

output of such software consists of a ranked list of complete sets

of conditions for reflections (i.e. the horizontal rows of conditions

given in Tables 1.6.4.2–1.6.4.30). Accordingly, the best-ranked set

of conditions is at the top of the list followed by others in

decreasing order of appropriateness. The list thus is answering

the question: Which is the most probable set of reflection

conditions for the data to hand? Such software uses integrated

intensities of Bragg reflections extracted from the powder pattern

and, as mentioned above, the results are sensitive to the parti-

cular profile integration procedure used. Moreover, only ideal

Wilson (1949) p.d.f.’s for space groups P1 and P1 are imple-

mented. The art of such techniques is to find appropriate criteria

such that the most likely set of reflection conditions is clearly

discriminated from any others. Altomare et al. (Altomare,

Caliandro, Camalli, Cuocci, da Silva et al., 2004; Altomare,

Caliandro, Camalli, Cuocci, Giacovazzo et al., 2004; Altomare

et al., 2005, 2007, 2009) have used a probabilistic approach

combining the probabilities of individual symmetry operations of

candidate space groups. The approach is pragmatic and has

evolved over several versions of the software. Experience has

accumulated through use of the procedure and the discrimination

of the software has consequently improved. Markvardsen et al.

(2001, 2012) commence with an in-depth probabilistic analysis

using the concepts of Bayesian statistics which was demonstrated

on a few test structures. Later, Markvardsen et al. (2008) made

software generally available for their approach. Vallcorba et al.

(2012) have also produced software for space-group determina-

tion, but give little information on their algorithm.

1.6.6. Space groups for nanocrystals by electron microscopy

By J. C. H. Spence

The determination of crystal space groups may be achieved by

the method of convergent-beam electron microdiffraction

(CBED) using a modern transmission electron microscope

(TEM). A detailed description of the CBED technique is given

by Tanaka (2008) in Section 2.5.3 of Volume B; here we give a

brief overview of the capabilities of the method for space-group

determination, for completeness. A TEM beam focused to

nanometre dimensions allows study of nanocrystals, while iden-

tification of noncentrosymmetric crystals is straightforward, as a

result of the strong multiple scattering normally present in

electron diffraction. (Unlike single scattering, this does not

impose inversion symmetry on diffraction patterns, but preserves

the symmetry of the sample and its boundaries.) CBED patterns

also allow direct determination of screw and glide space-group

elements, which produce characteristic absences, despite the

presence of multiple scattering, in certain orientations. These

absences, which remain for all sample thicknesses and beam

energies, may be shown to occur as a result of an elegant

cancellation theorem along symmetry-related multiple-scattering

paths (Gjønnes & Moodie, 1965). Using all of the above infor-

mation, most of the 230 space groups can be distinguished by

CBED. The remaining more difficult cases (such as space groups

that differ only in the location of their symmetry elements) are

discussed in Spence & Lynch (1982), Eades (1988), and Saitoh et

al. (2001). Enantiomorphic pairs require detailed atomistic

simulations based on a model, as in the case of quartz (Goodman

& Secomb, 1977). Multiple scattering renders Bragg intensities

sensitive to structure-factor phases in noncentrosymmetric

structures, allowing these to be measured with a tenth of a degree

accuracy (Zuo et al., 1993). Unlike X-ray diffraction, electron

diffraction is very sensitive to ionicity and bonding effects,

especially at low angles, allowing extinction-free charge-density

mapping with high accuracy (Zuo, 2004; Zuo et al., 1999).

Because of its sensitivity to strain, CBED may also be used to

map out local phase transformations which cause space-group

changes on the nanoscale (Zuo, 1993; Zhang et al., 2006).

In simplest terms, a CBED pattern is formed by enlarging the

incident beam divergence in the transmission diffraction

geometry, as first demonstrated G. Mollenstedt in 1937 (Kossel &

Mollenstedt, 1942). Bragg spots are then enlarged into discs, and

the intensity variation within these discs is studied, in addition to

that of the entire pattern, in the CBED method. The intensity

variation within a disc displays a complete rocking curve in each

of the many diffracted orders, which are simultaneously excited
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and recorded. The entire pattern thus consists of many inde-

pendent ‘point’ diffraction patterns (each for a slightly different

incident beam direction) laid beside each other. Fig. 1.6.6.1 shows

a CBED pattern from the wurtzite structure of ZnO, with the

beam normal to the c axis (Wang et al., 2003). The intensity

variation along a line running through the centres of these discs

(along the c axis) is not an even function, strongly violating

Friedel’s law for this elastic scattering. At higher scattering

angles, curvature of the Ewald sphere allows three-dimensional

symmetry elements to be determinated by taking account of ‘out-

of-zone’ intensities in the outer higher-order Laue zone (HOLZ)

rings near the edge of the detector. Since sub-ångstrom-diameter

electron probes and nanometre X-ray laser probes (Spence et al.,

2012) are now being used, the effect of the inevitable coherent

interference between overlapping convergent-beam orders on

space-group determination must be considered (Spence & Zuo,

1992).

A systematic approach to space-group determination by

CBED has been developed by several groups. In general, one

would determine the symmetry of the projection diffraction

group first (ignoring diffraction components along the beam

direction z), then add the z-dependent information seen in

HOLZ lines, allowing one to finally identify the point group from

tables, by combining all this information. After indexing the

pattern, in order to determine a unit cell the Bravais lattice is

next determined. The form of the three-dimensional reciprocal

lattice and its centring can usually be determined by noting the

registry of Bragg spots in a HOLZ ring against those in the zero-

order (ZOLZ) ring. Finally, by setting up certain special orien-

tations, tests are applied for the presence of screw and glide

elements, which are revealed by a characteristic dark line or cross

within the CBED discs. Tables can again then be used to combine

these translational symmetry elements with the previously

determined point group, to find the space group. As a general

experimental strategy, one first seeks mirror lines (perhaps seen

in Kikuchi patterns), then follows these around using the two-axis

goniometer fitted to modern TEM instruments in a systematic

search for other symmetry elements. Reviews of the CBED

method can be found in Steeds & Vincent (1983), in Goodman

(1975), and in the texts by Tanaka et al. (1988). A textbook-level

worked example of space-group determination by CBED can be

found in Spence & Zuo (1992) and in the chapter by A. Eades in

Williams & Carter (2009).
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