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An extensive study and analysis of the concepts, classification, presentation, and nomenclature of chirality
and lack of chirality in crystal structures and their constituents is presented. Oriented crystal structures are
classified. The chirality rules for existence of molecular crystal structures are examined and the relation to
segmentation and latent symmetry highlighted. The nomenclature of chirality and related terms, and the
relationship of chirality to optical activity is covered. The uses and limitations of the Euclidean normalizer are
treated. An improved glossary of terms is included.

1. Introduction. ± In dealing with chirality in relation to crystal structures it is
essential to distinguish between three different objects that may be either chiral or
achiral. These three are 1) the molecular components of the crystal, 2) the crystal
structure itself and 3) the symmetry group of the crystal structure, viz., its space group.
The interrelationship between these chiral or achiral objects is the main theme of this
paper. Some consideration will also be given to physical properties and nomenclature
in their relationship to chirality. An improved glossary of appropriate terms is
presented in Appendix A.

Whether an object is chiral or achiral depends on its symmetry group. Restricting all
considerations in this paper to three-dimensional physical space (but see Sect. 4.1), the
symmetry group of a chiral object contains symmetry operations of only the first kind
(viz., rotations and translations) and none of the second kind (viz., roto-inversions),
whereas that of an achiral object contains symmetry operations of both kinds in equal
numbers. These statements are formalized and proven below. The symmetry group of a
molecule is its point group, that of a crystal structure is its space group, and that of a
space group is its Euclidean normalizer [1].

The origin of the distinction of enantiomorphs is physical. Rigid-body motions of an
object are isometries of the first kind. The interconversion of an object between
enantiomorphs requires an isometry of the second kind, but there is no corresponding
physical action for a rigid body. Although the energies of the enantiomorphs are
identical, the energy barrier to interconversion is excessive for a rigid body. In the
presence of parity violation mitigated through the weak neutral current, an energy
difference between the two enantiomorphs appears but this is many orders of
magnitude (10�17) smaller than kT at room temperature. Differences in the activation
energies for forward and backward enantiomerisation reactions are possible, even
when the energies of the end states are identical [2 ± 4].
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Molecules and crystals may be present in the form of mixtures. Enantiomeric
mixtures of particular importance are those of compositions 100 :0% and 0 :100%,
described as enantiomerically pure, and the equimolar one of 50 :50% described as a
racemate or as being racemic. By definition, all the molecules in an enantiomeric
mixture, be it enantiomerically pure, racemic, or of intermediate composition, are
chiral. With regard to crystals, the special name racemic conglomerate is given to the
crop of crystals grown under equilibrium conditions from a racemate undergoing
spontaneous resolution. This solid-state mixture is characterised as having individual
crystals that are enantiomerically pure, but where the overall molecular composition of
the crop is that of a racemate. A 50 :50%mixture of crystals of 
- and �-NaClO3 (cubic
P213) is not a racemic conglomerate. The ClO�

3 anion is achiral (pyramidal, symmetry:
3m, C3v) and the enantiomorphic composition of a crop of NaClO3 crystals is not
dictated by the molecular enantiomer composition of the bulk from which the crystals
are grown. Crystal growth and phase transitions may lead to multidomain samples
known as twins. These may be thought of as a special kind of agglomerated mixture in
which the translation lattice (or a sublattice) is (approximately) invariant throughout
the whole sample, but where the crystal structure takes an integral number of different
orientations with respect to the lattice.

The chirality sense of a molecule is specified by its absolute configuration. The
chirality sense of a chiral crystal structure is specified by its absolute structure, but the
later term has a wider definition than the mere distinction of enantiomorphs (see below,
[5 ± 7]). Once again, the origin of this dichotomy of definitions is physical. Many
experiments on molecules are undertaken under conditions where they are free to
rotate and are detected in arbitrary orientations. Consequently, orientation is hidden
for molecules, and only enantiomers can be distinguished. Crystals are studied as
oriented single crystals where they are detected in controlled orientations, leading, as a
side product, to the distinction of enantiomorphs if the crystal is chiral.

2. Classification of Oriented Crystal Structures. ± Consider the effect of inversion
through a point on an oriented single crystal and its oriented crystal structure. Let X
represent the oriented crystal structure. Inversion through a point 1≈ generates the
oriented inverted crystal structure X � 1≈ X. Let the point symmetry group of X be P.
Then X � p X for all p�P. It is easy to show that P is composed of symmetry
operations, which are either all of the first kind, or one half are of the first kind and the
other half are of the second kind. The product of two symmetry operations of the same
or opposite kind gives a symmetry operation of the first or second kind respectively.
Clearly X � 1≈ X� 1≈pX for p�P so the coset 1≈ P contains all of those isometries
equivalent to the inversion that transform X into X. The coset 1≈ P is composed of
symmetry operations that are either entirely of the second kind, when P contains only
those of the first kind, or half each of the first and second kinds, when P contains
symmetry operations of both kinds. The properties of the transformation X�X will
now be classified according to chirality and centrosymmetricity.

Suppose that X is achiral. It follows by definition (see Appendix A) that there exists
an isometry f of the first kind such that X � fX. So X � 1≈ X� fX � f p X for p�P.
Multiplying by 1≈ one obtains X� 1≈ fpX and so 1≈ fp � P. For argument, assume that P
contains only symmetry operations of the first kind. Then as f and p are of the first kind
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and 1≈ of the second kind, so 1≈ fp � P must be of the second kind in contradiction to the
hypothesis that P contains only symmetry operations of the first kind. Thus, P contains
symmetry operations of the second kind, and the symmetry group of an achiral crystal
structure contains symmetry operations of the second kind. Conversely, let the
symmetry group P of X contain symmetry operations of the second kind s for s�P. One
may always write s� f 1≈ where f is of the first kind. So, X� s X� f 1≈ X � f X. X is
achiral as X and X may be superimposed by a pure rotation. So, the symmetry group of
an oriented achiral crystal structure contains symmetry operations of the second kind,
and, conversely, an oriented crystal structure whose symmetry group contains
symmetry operations of the second kind is achiral. By exclusion, since crystal
structures are either chiral or achiral, and symmetry groups are composed either
entirely of operations of the first kind or of equal numbers of the first and second kinds,
the symmetry group of a chiral crystal structure contains only symmetry operations of
the first kind and, conversely, a crystal structure whose symmetry group contains only
symmetry operations of the first kind is chiral.

Suppose that X is centrosymmetric, so 1≈ �P. It follows that X � 1≈ X�X since X�p
X for p � P. The oriented crystal structure and its inverse are identical and, hence,
achiral. Conversely, if X �X, then X � 1≈ X�X and 1≈ �P. The crystal structure is
centrosymmetric. So, if X is centrosymmetric, then X and X are identical, and,
conversely, if X and X are identical, then X is centrosymmetric. By exclusion, one sees
that if X is non-centrosymmetric, then X and X are not identical, and, conversely, if X
and X are not identical, then X is non-centrosymmetric.

Oriented crystal structures X are usefully classified into three crystal-structure
types NA, NC, CA as follows, each of which is illustrated by an example for a crystal
structure in the orthorhombic crystal system:

Crystal-Structure Type NA. The non-centrosymmetric achiral crystal-structure type
in which the point symmetry group P of X contains symmetry operations of the second
kind. X and X are not identical but may be brought into coincidence by a pure rotation
taken from the coset 1≈ P. Clearly X and X are not enantiomorphs. Crystal structures in
the point group mm2 are an illustration of this type. An oriented crystal structure and
its image produced by inversion through a point are not enantiomorphs and may be
brought into coincidence by the equivalent operations 1≈, 2x, 2y, or mz, two of which are
pure rotations by � and the other two are roto-inversions, viz., inversion through a
point and reflection in a plane.

Crystal-Structure Type NC. The non-centrosymmetric chiral crystal-structure type
for which the point symmetry group P of X contains only symmetry operations of the
first kind. X and X are not identical and may not be brought into coincidence by a pure
rotation. X and X are enantiomorphs. Crystal structures in the point group 222 are an
illustration of this type. An oriented crystal structure and its image produced by
inversion through a point are enantiomorphs and may be brought into coincidence by
the equivalent operations 1≈, mx, my, or mz, all of which are roto-inversions viz.,
inversion through a point and reflections in three mutually perpendicular planes.

Crystal-Structure Type CA. The centrosymmetric achiral crystal-structure type
where X �X. Clearly, X and X are not enantiomorphs. Crystal structures in the point
group mmm are an illustration of this type. An oriented crystal structure and its image
produced by inversion through a point are identical.
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X-Ray-diffraction measurements on single crystals are treated by way of the Flack
parameter [8] (see also [5] [6] [9 ± 11]). The macroscopic crystal C is treated as a
mixture of an oriented crystal structure X and its inverted structure X in variable
proportion defined by C� (1� x) X � x X. In non-centrosymmetric crystal structures
(types NA and NC), x describes the proportions of the oriented crystal structuresX and
X in the sample. When the crystal structure is non-centrosymmetric and achiral (type
NA), x describes the proportions of two inversion-related orientations of the crystal
structure whose relationship may also be described by a rotation. When the crystal
structure is chiral (typeNC), xmeasures the proportion of the two enantiomorphs present
in the sample. For a multi-domain twin of a chiral crystal structure (type NC), Flack and
Bernardinelli [5] show how to calculate an equivalent Flack parameter. For centrosym-
metric crystal structures (type CA), X�X and the Flack parameter x is undefined.

3. Molecular Crystal Structures. ± The upper part of Table 1 tabulates the collation
of observations of Jacques et al. [12] concerning the existence of chiral and achiral
crystal structures formed of chiral (enantiomerically pure or racemate) or achiral
molecules. The lower part of Table 1 deals with non-racemic enantiomeric mixtures.
Jacques et al. [12] do not provide collated information on the latter, of which
presumably few have been reported in the literature. Applying the reasoning
developed below in this section, we come to the conclusion that, for non-racemic
enantiomeric mixtures, chiral crystal structures should be permitted whereas achiral
crystal structures should be forbidden, thus following the same rules as in the
enantiomerically pure case. In the upper part of Table 1, every possible combination
except one has been observed in practice. These include the counter-intuitive case of a
chiral crystal structure formed from a racemate. In this case, supposing, for example, the
molecule to be rigid, an isometrymust relate the two enantiomers of opposite chirality, but
this isometry is not part of the symmetry operations of the space group but rather a −local×
or −pseudo-symmetry× operation. It is thought that ca. 50 of these chiral crystal structures
of racemates are known at present from 250000 structures in the CSD, although it is not
possible to give an authoritative and citable reference for this number. For various
technical reasons associated with nomenclature and self-consistency, a direct search on the
CSD does not produce reliable results, and one must critically consult the primary
literature to identify those racemates with chiral crystal structures (see, e.g., [13]).

The one forbidden case in the upper part of Table 1 is that of an achiral crystal
structure formed from enantiomerically pure chiral molecules. It follows that all known

Table 1. Restrictions on the Formation of Chiral and Achiral Crystal Structures from Chiral or Achiral Molecules.
Numerous examples are given in [12] [63].

Achiral crystal structure Chiral crystal structure

Achiral molecules Permitted Permitted
Chiral molecules ± enantiomerically pure Forbidden Permitted
Chiral molecules ± racemate Permitted Permitted

Chiral molecules ± non-racemic mixture
(enantiomeric mixture)

See text See text
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crystal structures formed from enantiomerically pure chiral molecules are chiral.
Jacques et al. [12] offer no explanation for this observation, but a commonly formulated
proof, based entirely on considerations of symmetry, runs as follows. In an achiral
crystal structure, symmetry operations of the second kind are in action. When these
operate intramolecularly, the molecules are achiral, whereas, when they operate
intermolecularly, a racemate is present. An achiral crystal structure is, thus, formed
either from achiral molecules or from a racemate but never from enantiomerically pure
chiral molecules. Consequently, the latter must form a chiral crystal structure. We now
investigate this observation and proof in more detail in an attempt to uncover its true
nature. This is carried out first with a visual illustration and then with a more technical
example. The illustration is inspired from La Coupe du Roi [14], which is a neat way of
cutting an apple into two identical chiral halves. Consider building up an apple crystal
structure from an enantiomerically pure load of identical chiral apple halves. Pairs of
apple halves are assembled to form complete achiral apples (it is assumed that the
interior boundaries of the apple between the half apples disappear as they stick
together), and these complete achiral apples are then arranged with a cubic close
packing to form an achiral apple crystal structure. We have, thus, managed to construct
an achiral crystal structure out of an enantiomerically pure load of chiral entities. On
the other hand, Jacques et al. [12] do not find achiral crystal structures formed by
crystallization of enantiomerically pure chiral molecules.

Figure,a shows the representation in projection of two identical chiral sets each of
four points [15]. Each four-point set has point symmetry 2, the three nearest-neighbour
distances are equal, and the three angles, two nearest-neighbour and one torsion, are
90�. The two four-point sets are so placed that the point symmetry of the combined set
of eight points is 2 and they are allowed to approach each other (Fig.,b), until at one
particular position (Fig.,c), the point symmetry of the ensemble jumps up to m3≈m,
making the combined set of eight points achiral. The essential difference between the
four-point-set objects and real molecules is in their interaction. In the special high-
symmetry arrangement, the points of the four-point-set objects have approached each
other to distances identical to the intraset ones. This leads to a singular change in
symmetry. However, if these points are now taken to represent atoms in a molecule,
one would say that the two molecules have reacted to form a compound molecule
whose symmetry and chirality is quite different from that of the reactants. According to
the usual procedure, a crystal pattern derived from these interacting molecular
reactants would be described as that of the compound molecule rather than that of the
reactants. Real molecules are identified by the distinct differences in intra- and
intermolecular geometries they display. A molecule has its own identity and interacts
only weakly with its neighbours. Moreover, it is not customary to describe real crystal
structures as being composed of partial molecules obtained by the arbitrary and
imaginary segmentation of real molecules. The origin of the restriction described by
Jacques et al. [12] is physical and chemical, not symmetrical. For completeness, in
Appendix B is a comparison presented point by point of experimental observations on
molecular crystal structures collated principally by Jacques et al. [12], and the
conclusions of the molecular segmentation theory of Anet et al. [14].

Such sudden jumps in symmetry as occur in the above examples are known in
related problems in comprehending the domain structure of crystals caused by phase
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transitions. Under the name of latent symmetry, Litvin and Wadhawan [16] used
modulo-normalizers in the study of a composite object formed of basic units that can be
further subdivided into subunits. This approach predicts some but not all of the
symmetries of the composite object. In a following paper, Litvin and Wadhawan [17]
then derived a sufficient condition that an isometry is a symmetry of a composite.
However, the condition is not necessary, and the theorem has no general converse.

The example cited above for searching the CSD for chiral crystal structures of
racemates draws our attention to the importance of correctly naming molecular
compounds in reporting their crystal structures. Specific nomenclatures (see Appen-
dix A) exist for naming enantiomerically pure compounds of known absolute
configuration, enantiomerically pure compounds of unknown absolute configuration
or relative configuration, and racemates. Moreover, the name to be given is that of the
molecular compound in the crystal structure and not that in the bulk from which it was
crystallized. The molecular enantiomer composition of the liquid and crystalline phases
may well be different.

4. Nomenclature. ± Towards the end of the 19th century, there was a great deal of
work on the properties and characterisation of mixtures of enantiomers in the solid and
liquid states [12] [18 ± 20]. Inevitably, terms were invented before the phenomena were
fully understood. This has led to the use of some clearly unsuitable terms being used
commonly even to this day. In the subsections below we give examples that are of
relevance to crystallography with suggestions for improved terminology.
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Fig. 1. A representation in projection of two four-point-set objects of individual symmetry 2 forming an eight-
point-set object of symmetry 2 in a) and b), and m3≈m in c). The points marked by a dot are above and those
marked by an open circle below the plane of the figure. Within each four-point set the three nearest-neighbour

distances are equal, and the three angles, two nearest-neighbour and one torsion, are 90�.



A persistent idea of the scientists of the end of the 19th century who were studying
enantiomorphs and racemates was the notion that crystallization of an equimolar
mixture of opposite enantiomers to form an homogeneous structure necessarily
involved compound formation or association (e.g., [18] [20]). In this view, this
equimolar mixture was a compound, a racemic compound. The current view is, of
course, that the forces controlling intermolecular packing of an enantiomerically pure
sample are very similar to those at work in the equimolar mixture of enantiomers (see,
e.g., Brock et al. [21] on Liebisch×s Law [22]). What is nowadays known as a racemic
conglomerate [23], Kipping and Pope [18] called an externally compensated mixture of
non-racemic molecules. Wisely, in modern-day parlance, racemic and racemate refer to
an equimolar mixture of opposite enantiomers rather than to any notion of some
specific interaction between opposite enantiomers. The term racemate applies only to
the equimolar mixture of opposite enantiomers. Mixtures in other proportions are
referred to as enantiomeric mixtures (see [24 ± 26].

The classical analysis of the phase equilibria of binary mixtures of enantiomers was
written in 1899 by Roozeboom [27] and is treated in detail, together with that of ternary
systems, in Jacques et al. [12]. Coquerel [28] has published an authoritative modern
review on the heterogeneous equilibria between condensed phases in binary systems of
enantiomers, presenting many possible phase diagrams. Unfortunately a review of
ternary phases is not yet available. Of interest in the current context is the marked
similarity between some of the phase diagrams near to the racemic composition in
situations where, on the one hand, one has the formation of an homogeneous phase of
the racemate (racemic compound) that is miscible with the pure enantiomers, and, on
the other hand, no homogeneous phase of the racemate is formed although the
enantiomers mix to form solid solutions. Consequently the topology and topography of
the phase diagram, if available, may not be a reliable guide to crystal structure. In
particular, a maximum in the liquidus curve at the racemic composition should not be
taken to indicate an ordered crystal structure. One also notes that Coquerel [28] does
not qualify the phase transitions between the homogeneous phase of the racemate
(racemic compound) and the racemic conglomerate as polymorphic in the manner of
Jacques et al.[12] but uses the terms eutectoid and peritectoid.

4.1Chirality.Throughout this paper we have used a geometric definition of chirality,
derived from the classical one of Lord Kelvin [29] as given in the Basic Terminology of
Stereochemistry [23], but which is based on inversion through a point followed by an
arbitrary pure rotation and translation rather than mirror reflection. This definition is
entirely satisfactory for the needs of three-dimensional stereochemistry and crystal
chemistry. The choice of inversion through a point rather than mirror reflection is
guided by the special importance of the inversion operation in crystallography and its
commutative properties. The equivalence of these two descriptions of chirality may be
readily established. Let Rm represent a mirror reflection m followed by an arbitrary
pure rotation R. As m� 2 1≈, where 2 is a rotation of � about the normal to the mirror
plane and 1≈ represents the operation of inversion through a point, one obtains R m�
R 2 1≈ �S 1≈ where S is a pure rotation. This establishes the required equivalence. In
general, mirror reflection and inversion through a point are not equivalent for oriented
objects where the arbitrary pure rotations are not permitted. The entire treatment in
this paper is limited to three-dimensional structures, because inversion is important in
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the definition, and needs to be an isometry of the second kind and have a determinant
of � 1. In spaces of even dimension, the inversion is an isometry of the first kind.
Enantiomorphism occurs also in two-, four-, and higher-dimensional spaces.

In situations where one is dealing with electric and magnetic fields interacting with
bodies in motion, the geometric definition of chirality is unsatisfactory. Moreover the
fine effects of the nucleus have also to be taken into account. The approach taken is to
consider the invariance of the laws of nature under certain very general trans-
formations. To a very good degree of approximation, it is known that these are invariant
under the transformations C, P, and T, where C stands for charge conjugation (changing
a particle into its antimatter particle of opposite electric charge), P for parity (space
inversion or inversion through a point), and T for time reversal (reversal of the
directions of motion). Currently it is known that P and C can be independently violated
under very special conditions but, as yet, no case of CPT violation has been observed.
One of the major objectives of the production of cold anti-hydrogen at CERN is to
allow comparison of the fine atomic spectra of hydrogen and anti-hydrogen in a search
for CPT violation. Very clear presentations of how chirality should be dealt with in
these situations are to be found in the works of Barron [2 ± 4], where one finds the
following new definition of chirality: −True chirality is exhibited by systems that exist in
two distinct enantiomorphic states that are interconverted by space inversion but not by
time reversal combined with any proper spatial rotation.×

4.2 Racemic Compound and Anomalous Racemates. What is dubbed [21] a racemic
compound is an ordered crystal structure of a racemate. This crystal structure can be
either chiral or achiral, and may be arranged in any one of the 230 space-group types. In
place of racemic compound, it would be clearer to call this arrangement, in full, an
ordered racemic crystal structure, or in short, a racemic structure. A few cases are known
where the composition of an ordered crystal structure is that of a mixture of
enantiomers in rational proportions other than the 1 :1 of the racemate. These have
been called anomalous racemates [12], a choice of name that makes it difficult to
distinguish them from pseudoracemates and quasiracemates. Perhaps it would be
clearer to use, in full, an M :N mixed enantiomeric crystal structure or, in short, an M :N
enantiomeric structure, where M and N are integers giving the proportion of the two
enantiomers. Such nomenclature fits in nicely with the existing IUPAC system for
naming racemates, e.g., for an M :N enantiomeric mixture of (2R,3R)- and (2S,3S)-
tartrate ions one would write {M :N} (2RS,3RS)-tartrate. An extension of this system
even allows the naming of mixtures of diastereoisomers, e.g., {M :N :L} (2RSR, 3RSS)-
tartrate names a mixture containing proportions M of (2R,3R)-tartrate, N of (2S,3S)
tartrate, and L of (2R,3S) tartrate (meso-tartrate).

4.3. Pseudoracemate. Kipping and Pope [18] identified crystalline solids of
equimolar proportions of enantiomers that were clearly different from those of the
corresponding ordered racemic crystal structures. They called them pseudoracemates.
Kipping and Pope×s [18] physical model of these solids was that of multi-domain
crystals where individual domains are enantiomerically pure and the crystal is twinned
by inversion. This ingenious proposition, drawn on their considerable knowledge of
classical crystallography, but limited by the state of science at the time, is, unfortunately,
wrong. What they had identified turned out to be crystals of a solid solution of
enantiomers in which any molecular location in the crystal structure may happily be

��������� 	
����� ���� ± Vol. 86 (2003)912



occupied by either enantiomer. A suitable name would, thus, be a disordered racemic
(crystal) structure, but an essential characteristic of these solid solutions is the wide
range of compositions over which the structure occurs. Consequently, it seems
unnecessary to have a specific name for the racemate and the generic name disordered
mixed enantiomeric (crystal) structure would have more-general application. To specify
the structure, one needs to indicate the composition(s) at which a structure analysis has
been undertaken and the composition range of the phase at a given temperature.

4.4. Racemic Twinning. No definition of racemic twinning is to be found in the
literature, although the term is widely used. Like the term data mining, recently
criticised by Allen [30], racemic twinning is semantically questionable. Its meaning
cannot easily be construed from its component words, one of which, −racemic×, refers to
the fixed molecular composition of the crystal and the other, −twinning×, to the existence
of variously orientated homogeneous domains within the crystal. So the term specifies
the molecular composition of the crystal but does not specify the orientational
relationship between the domains. Since it is known that racemates may crystallize in
any one of the 230 space groups, there seems to be no restriction on space group for the
incidence of racemic twinning, so that it may occur in crystals with either a
centrosymmetric or a non-centrosymmetric structure. On the other hand, racemic
twinning cannot occur in NaClO3, which, although it has a chiral crystal structure, is
composed of achiral molecules and is not a racemate. Even if an extended
interpretation of −racemic× to objects of larger scale than molecules, such as domains,
were to be allowed, one still has to accept the implicit fixed proportions of the chiral
domains. For these reasons, we have never used the term racemic twinning and
thoroughly discourage its use. On the other hand, in our contributions to the study of
non-centrosymmetric crystals, we have found the term twinning by inversion, defined in
Appendix A, to be both clear and useful.

4.5. Fixing the Enantiomorph. In direct methods of structure solution, a few phases
may be forced to take a restricted range of values for what are called, according to the
tradition of the literature on direct methods, fixing the origin and fixing the
enantiomorph [31] [32]. While the process of restricting a single phase to fix the
enantiomorph is not applicable to centrosymmetric crystal structures, neither is it
restricted only to chiral crystal structures (crystal-structure type NC) [1]. For all non-
centrosymmetric achiral crystal structures (crystal-structure type NA), one has also to
fix the enantiomorph, although the choice is not one of choosing an enantiomorph but,
in fact, of choosing between two inversion-related orientations. To make matters even
more complicated, for structures with a chiral space group, the process of fixing the
enantiomorph is determined not by restricting a phase but by choosing one of two
enantiomorphically-related space groups. All in all, it seems that what is called fixing
the enantiomorph would be better called fixing the absolute structure. Authors of
publications dealing with the experimental determination of triplet phases by multiple-
beam X-ray diffraction have also used the term enantiomorph in the manner of the
direct-methods literature [33 ± 36] but, more recently, use also the term absolute
structure [37].

4.6. Optical Activity. There is no one-to-one correspondence between optical
activity and chirality. The situation concerning natural optical activity (see Ta-
ble 10.2.1.1 of Hahn and Klapper [38], and Barron [39]) can be seen by examination of

��������� 	
����� ���� ± Vol. 86 (2003) 913



Table 2. The natural optical rotation observable is a time-even pseudoscalar [4]. It was
well known to Faraday and Lord Kelvin, but perhaps not to Pasteur, that magnetic
optical rotation (Faraday rotation) is not chiral, as the magnetic optical rotation
observable is a time-odd axial vector. Natural optical activity (see [40] for a
comprehensive review of optical-activity measurements on crystals) has, indeed, been
observed in particular achiral single crystals belonging to the four geometric crystal
classes listed in Table 2: in class m, LiH3(SeO3)2 [41] and K2ZnCl4 [43]; in class mm2,
KTiOPO4, (NH3(CH3))5Bi2Br11 [44], NaNO2 [42]; in class 4≈ , CdGa2S4 [45]; in class
4≈2m, NH4H2PO4 [46] and AgGaS2 [47 ± 49]. Molecules with symmetries m, mm2, 4≈ , and
4≈2m do not show optical activity in solution since directions within the molecule occur
in enantiomorphic pairs with optical activities of equal magnitude but opposite sign,
and thermal tumbling of the molecules ensures a spatial and temporal average of zero.
In much the same way, albeit with the individual directions of enantiomorphic pairs
residing in opposite enantiomers, a racemate in solution does not show optical activity.

A partial examination of Table 2 limited to molecules in solution, these being
enantiomerically pure when chiral, leads to a false one-to-one correspondence between
chirality and optical activity as a potential source of confusion. Thus, the 1930 edition of
the Oxford English Dictionary contained a definition of chirality that identified it with
optical activity. Whyte [50] [51] made a very strong case in opposition to this usage, and
subsequent versions of the Oxford English Dictionary define chirality in the way of
Lord Kelvin [29].Barron [4] is able to state −. . . that the hallmark of a chiral system is that
it can support time-even pseudoscalar observables×. Isotropic natural optical rotation is
such an observable, but anisotropic optical rotation from achiral crystals is not. One
should, thus, be aware that Glazer and Stadnicka [52], in their classification of physical
properties of crystals and directions within a crystal, have implicitly chosen to retain the
1930 Oxford English Dictionary definition identifying chirality with optical activity and
chiral with optically active. With this choice of definition, they come to identify
−absolute chirality× as being permissible for crystals in the geometric crystal classes m,
mm2, 4≈ , and 4≈2m.

5. Chiral and Achiral Space Groups. ± Many objects of our three-dimensional
perceptual world are not only chiral but appear in nature in two versions, related at least
ideally, as a chiral object and its mirror image. Such objects are called enantiomorphous,
or simply enantiomorphs [53]. The eleven pairs of enantiomorphous space groups [54]

Table 2. Restrictions on Natural Optical Activity for Crystals and Molecules both Chiral and Achiral. The row
title qualifies the column titles.

Single crystal Molecules in solution or as liquid

Achiral Permitted only
in m, mm2, 4≈ , 4≈2m

Forbidden

Chiral Permitted Enantiopure: Permitted

Racemate: Forbidden

Non-racemic mixture:
(enantiomeric mixture) Permitted
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are a familiar set containing the 22 chiral space groups. Within each pair, inversion
through a point transforms one space group into the other, e.g., P61 transforms into P65
and vice versa. These 22 space groups are the only ones of the 230 that are chiral. All of
the other 208 are achiral. For example, inversion through a point transforms space
group P21 into P21 itself. Space group P21 is, thus, achiral. Let us be clear: a crystal
structure in space group P21 is chiral but the space group itself is achiral since it does not
form one member of an enantiomorphous pair. This point was overlooked by many
authors of contributions to the field of small-molecule crystallography and, more
recently, crystal engineering, who used expressions such as −chiral space group× to mean
the space group of a chiral crystal structure or −structures in a chiral space group× to
mean chiral crystal structures.

As a consequence of the above clarification of the term −chiral space group×, one is
confronted with the problem of giving a suitable name to the class of those space groups
that are compatible with chiral crystal structures. There are 65 such space groups and
these contain only symmetry operations of the first kind. It is of relevance to note that,
in his very early development of space groups, predating those of Schoenflies and
Fedorov, Sohncke (1879) correctly derived the 65 containing only symmetry operations
of the first kind since he did not consider isometries of the second kind to be symmetry
operations [55] [56]. One may, thus, refer to the Sohncke space group (type)s as the
class of the 65 containing only symmetry operations of the first kind.

5.1. Symmetry Elements and Their Graphical Representation. The methodology that
has been used above for space groups may also be applied to isolated symmetry
operations and their representative symmetry elements [57 ± 59]. On inversion, a screw
rotation Nm is transformed into a screw rotation Nn, where m � n �N. Consequently
the following four pairs of enantiomorphic screw rotations exist: {31, 32}, {41, 43}, {61, 65},
and {62, 64}, and each of these eight screw rotations is chiral. The three screw rotations
21, 42, and 63 are invariant on transformation by inversion and do not fall into
enantiomorphic pairs. Clearly 21, 42, and 63 are achiral, although an atomic distribution
around any one of these eleven isolated screw axes is chiral. In the International Tables
for Crystallography, Vol. A [60], the three achiral screw rotations are described as
−neutral×, but the term is not used elsewhere in the literature.

When one holds the symmetry-element diagram of space group P61 as drawn in [60]
up to a mirror one observes that the graphical symbol for the 61 symmetry element has
been transformed into that of the 65 symmetry element, as, indeed, it should be.
Likewise the graphical symbol for the 31 symmetry element becomes correctly that of
the 32 symmetry element. However, the graphical symbol of the 21 symmetry element is
transformed into a symbol which is undefined in [60]. A similar problem arises with the
graphical symbols of the other achiral symmetry elements 42 and 63. Moreover, the
graphical symbols of some other symmetry elements do not transform in the same way
as the symmetry operations they represent. Consider the graphical symbol of the 61
symmetry element. As we have seen, mirror reflection transforms this correctly into the
graphical symbol of the 65 symmetry element. However, rotation by 180� about a
direction perpendicular to the axis of the 61 symmetry element also transforms a 61
graphical symbol into a 65 graphical symbol, contrary to the transformation properties
of the 61 symmetry operation it represents, and for which such a rotation leaves the
symmetry operation invariant. Moreover, the 61 graphical symbol is centrosymmetric.
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Designers of 3D graphical representation systems of the 230 space groups will have to
pay great attention to the transformation properties of the graphical objects used to
represent symmetry elements. The 3D graphical objects chosen need both to have the
same transformation and symmetry properties of the symmetry operation represented,
and, in section/(limited-)projection, to resemble as nearly as possible the well-accepted
but unsatisfactory 2D graphical symbols used in [60]. No doubt the Euclidean
centralizer of the symmetry operation [58] has a key role to play in the analysis. One
also notes that, in the report of the sub-committee on symmetry elements [57 ± 59], no
mention is to be found concerning the symmetry of a symmetry element.

5.2. Euclidean Normalizers. A powerful technique in symmetry-group theory is that
of the Euclidean normalizer, which is fully described, with examples of its use, in [1].
This section has the double objective of drawing the attention of structure analysts to
the practical value of the Euclidean normalizer in their work and to point out to
theoreticians the shortcomings of the current state of development of Euclidean
normalizers as they apply to chiral and achiral space groups.

One observes on examination of Tables 15.2.1.2 ± 4 in [1], that the Euclidean
normalizers of 208 space groups are centrosymmetric. Each of these space groups is,
thus, achiral. These are exactly the same 208 space groups identified above as being
achiral. The Euclidean normalizers of the remaining 22 space groups contain only
isometries of the first kind. The space groups themselves are, thus, chiral. They are,
indeed, the 11 pairs of enantiomorphic space groups mentioned above. However, the
concept of the Euclidean normalizer, which refers to individual groups, does not lead to
the classification of the chiral space groups into enantiomorphic pairs.

A space group is mapped onto itself by any symmetry operation of its Euclidean
normalizer. But what happens to the crystal structure under the effect of an operation
of the corresponding Euclidean normalizer? One finds the crystal structure or its
enantiomorph in a different setting or orientation with a space group that remains
totally unaltered. First, let us concentrate our attention on the 208 space groups with a
centrosymmetric Euclidean normalizer and consider the action of the Euclidean
normalizer×s centre of inversion. Its position is tabulated in Tables 15.2.1.3 and 4 in [1].
If the initial crystal structure and its inverted image are not identical, the coordinates of
the centre of inversion are precisely the ones to use to invert the crystal structure model
without change of the space group setting [6] [9], making Tables 15.2.1.3 and 4 of great
practical use. For example, for space group Fdd2, the coordinates of the inversion point
are given as 1/8, 1/8, 0. For completeness, within these 208 space groups, the initial
crystal structure, and its invert are: (crystal-structure type NA) inverted one with
respect to the other for the non-centrosymmetric achiral structures; (crystal-structure
type NC) enantiomorphs for chiral crystal structures; and (crystal-structure type CA)
identical for centrosymmetric crystal structures,. If we now turn to the remaining 22
space groups, forming the 11 enantiomorphic pairs, for which the Euclidean normal-
izers contain only symmetry operations of the first kind and for which the crystal
structure is chiral. The operations of the Euclidean normalizer only rotate or translate
the crystal structure, meaning that the enantiomorph of the crystal structure is NOT
generated. Tables 15.2.1.3 and 4, thus, lack the coordinates of the centre of inversion to
form the enantiomorph. As detailed in [9], the origin suffices for space groups in the
conventional setting.
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Further examination of Tables 15.2.1.3 and 4 shows that some space groups have
Euclidean normalizers containing continuous translations. These are identified by a
numerical superscript on the upper case cell-centring symbol as well as by one or more
of the cell basis vectors containing a multiplicative factor �. For example, for space
group Fdd2, the Euclidean normalizer is given as P1ban with basis vectors 1/2a, 1/2b, �c.
These are space groups for which the origin cannot be fixed on a symmetry element in
one or more directions. Tables 15.2.1.3 and 4 allows the number and direction of these
continuous translations to be readily identified for space groups in conventional
settings. The section of International Tables for Crystallography, Vol. A in [60] does not
give a specific collective name to these space groups, but, in the literature, they are
called polar, and Flack and Schwarzenbach [11] sometimes use the term origin-free.
Neither polar nor origin-free are really satisfactory. With the automation provided by
the Flack and Schwarzenbach [11] origin-fixing algorithm, it is so infrequently
necessary to speak collectively about these space groups that the editors of Interna-
tional Tables for Crystallography, Vol. A [60], were wise to not have coined or defined a
specific term.

The shortcomings of the Euclidean normalizer as detailed above are not really
surprising, as the normalizer is based on group-theoretical rather than physical
concepts. One is reminded of the classification of space groups into 219 isomorphism or
affine-equivalence classes, which proves to be of limited practical value. Structure
analysis makes use of a space-group classification into 230 special affine-equivalence
classes engendered by the addition of physical concepts connected to inversion through
a point [61]. It would seem, then, that an extension of the Euclidean-normalizer
formalism permitting mapping of a space group both onto itself and onto its
enantiomorph should lead naturally within this framework to the identification of
enantiomorphic pairs of space groups and the identification of inversion points. One
notes that Billiet and Bertaut [62], in their study of isomorphic subgroups of space
groups, specifically allow the subgroup to be of the same or enantiomorphic type to that
of the space-group type.

6. Concluding Remarks. ± As the structure analyst must deal with and write about
three chiral or achiral objects viz., the molecules, the crystal structure, and the space
group, it is of paramount importance that clear nomenclature be adhered to in order to
limit misunderstanding and confusion. It is essential to separate the chiralities of these
objects and ensure that the qualifier −chiral× is applied correctly to the appropriate
object. The space group of a chiral crystal structure is not necessarily chiral, although it
will always be one of the Sohncke space groups. Furthermore, in circumstances where
the molecular enantiomer composition of an enantiomeric mixture, be it in solution or
the solid state, is being specified, it is highly advisable to use only the terms
enantiomerically pure and racemic. Applying the term chiral in these circumstances,
while not necessarily wrong, is certainly open to misinterpretation.

This paper describes a work that is much more of scholarship and analysis than of
discovery and invention. Nevertheless, its content is pertinent to modern-day
crystallography. Brock and Dunitz [63] have contributed towards a grammar of crystal
packing. The current work adds a concise, useful and well-defined vocabulary specific
to chirality.
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Appendix A: Glossary of Terms. ± Many of the definitions of terms given in this glossary are drawn or
inspired from the IUPAC Basic Terminology of Stereochemistry [23]. Only where the definition of a term is
identical to that in [23] is the source cited.

Absolute configuration: The spatial arrangement of the atoms of a physically identified chiral molecular
entity (or group) and its stereochemical description (e.g., (R) or (S), (P) or (M), 
 or �, etc).

Absolute structure: The spatial arrangement of the atoms of a physically identified non-centrosymmetric
crystal and its description by way of unit-cell dimensions, space group, and representative coordinates of all
atoms.

Chiral: Having the property of chirality [23].
Chirality: The geometric property of a rigid object (or spatial arrangement of points or atoms) of being non-

superposable by pure rotation and translation on its image formed by inversion through a point; the symmetry
group of such an object contains no symmetry operations of the second kind (inversion through a point, 1≈ ;
reflection through a plane, m ; roto-inversion, N). When the object is superposable by pure rotation and
translation on its inverted image, the object is described as being achiral ; the symmetry group of such an object
contains symmetry operations of the second kind. Barron [4] provides a more-general definition of chirality:
−True chirality is exhibited by systems that exist in two distinct enantiomorphic states that are interconverted by
space inversion but not by time reversal combined with any proper spatial rotation×.

Chirality sense: The property that distinguishes enantiomorphs. The specification of two enantiomorphic
forms by reference to an oriented space, e.g., of a screw, a right threaded one or a left threaded one. The
expression opposite chirality is short for opposite chirality sense [23].

Enantiomer: One of a pair of chiral molecular entities of opposite chirality sense.
Enantiomerically pure: A sample in which all molecules have (within limits of detection) the same chirality

sense. Use of homochiral as a synonym is strongly discouraged [23].
Enantiomorph: One of a pair of chiral objects or models of opposite chirality sense.
Flack parameter: The Flack parameter [8] is the molar fraction x in the defining equation C� (1� x) X � x

X, where C represents an oriented two-domain-structure crystal, twinned by inversion, consisting of an oriented
domain structure X and an oriented inverted domain structure X. In reciprocal space, the Flack parameter [8] x
is defined by the structure-amplitude equation G2(h, k, l, x)� (1 � x) �F(h, k, l) � 2� x �F(h≈, k≈, l≈) � 2. For a multi-
domain-structure twin of a chiral crystal structure, an equivalent Flack parameter [8] may be calculated
according to the method of Flack and Bernardinelli [5].

Racemate: An equimolar mixture of a pair of enantiomers. It does not exhibit optical activity in solution.
The chemical name or formula of a racemate is distinguished from those of the enantiomers by the prefix (�) or
rac or by the symbols (RS) or (SR).

Racemic: Pertaining to a racemate [23].
Racemic conglomerate: An equimolar mechanical mixture of crystals, each one of which contains only one

of the two enantiomers present in a racemate. The process of its formation on crystallization of a racemate is
called spontaneous resolution, since pure or nearly pure enantiomers can often be obtained from the
conglomerate by sorting [23].

Relative configuration: The configuration of any stereogenic centre with respect to any other stereogenic
centre contained within the same molecular entity. Unlike absolute configuration, relative configuration is
reflection-invariant. Relative configuration, distinguishing diastereoisomers, may be denoted by the configura-
tional descriptors (R*, R*) (or l) and (R*, S*) (or u) meaning, respectively, that the two centres have identical or
opposite configurations. For molecules with more than two asymmetric centres the prefix rel may be used in
front of the name of one enantiomer where (R) and (S) have been used. If any centres, have known absolute
configuration then only (R*) and (S*) can be used for the relative configuration [23].

Twinning by inversion: The symmetry operation relating pairs of domain structures twinned by inversion
may be represented by inversion through a point or by some other isometry equivalent to inversion under the
point symmetry group of the domain structure. A two-domain-structure twin that is twinned by inversion is
called an inversion twin, but this term is not appropriate when there are more than two domain structures.

Appendix B: Segmentation of Molecular Crystal Structures. ± A comparison is made here point by point of
experimental observations on molecular crystal structures collated principally by Jacques et al. [12], labelled
Obs, and the conclusions of the molecular segmentation theory of Anet et al. [14], labelled Seg. The findings of
Anet et al. [14] are presented as direct quotes (in italics) from their paper apart from the explanatory comments
given between square brackets [ ]. There are five points of comparison. The theory of Anet et al. [14] seeks to
partition a finite object (i.e., a molecule) into a set of isometric segments from which the whole molecule can be
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built up in the way that a crystallographic asymmetric unit builds up a whole crystal structure (although these
molecular segments are not necessarily completely lacking in symmetry). From the derived segmentation of the
molecule, a comparison is then made of one particular aspect of the symmetry of the object and the segments of
much concern to these chemists viz., the chirality. A major difference between molecules and crystal structures
is that the symmetry group of the former is finite and that of the latter is infinite. Nevertheless, in our opinion the
methodology and results of Anet et al. [14], which we make no attempt to describe here, may be extended to
space groups and molecular crystal structures by the pragmatic use of a cyclic boundary condition applied to a
finite object.

Obs 1: There are hundreds of known chiral crystal structures formed of achiral molecules.
Seg 1: It is not possible to dissect chiral molecular models into achiral isometric segments.
Obs 2: There are tens of known chiral crystal structures composed of racemates.
Seg 2: It is not possible to dissect chiral molecular models into heterochiral isometric segments.
Obs 3: All known crystal structures of enantiomerically pure substances are chiral.
Seg 3: Indeed, among the myriad combinations of objects and segments in three dimensions, only five types

are disallowed. [Among the allowed combinations is the segmentation of an achiral molecular model into
homochiral isometric segments.]

Obs 4: There are hundreds of crystal structures in which the number of independent (crystallographically
independent but chemically identical) molecules in the asymmetric region Z�� 1.

Seg 4: The segments must be related by a symmetry operation of the cut object.
Obs 5: Many molecules have non-crystallographic symmetry in the crystal structure.
Seg 5: Accordingly, the segments may not contain any symmetry element that does not belong to the object.
The understanding of the relationship between the symmetry of the molecules that build a crystal structure

and the crystal×s own symmetry is an important objective of structural crystallography. Whilst appreciating the
inventiveness, effort, and scholarship of Anet et al. [14] one is forced to admit that that particular approach has
not yielded useful results for molecular crystal structures. What is most probably lacking in their approach is a
physical and chemically meaningful basis for the segmentation.

The author wishes to thank H.-B. B¸rgi and D. Litvin for helpful discussions. Trying to cut up molecular
apples over the telephone is a stimulating activity. The image of someone holding up International Tables for
Crystallography, Vol. A, in front of the bathroom mirror is amusing. The author gratefully acknowledges the
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improving its content and presentation immensely: L. Barron, G. Bernardinelli, H. Birkedal, H.-B. B¸rgi, C.
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